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In this work, we are interested in a class of numerical schemes for certain phase field models. It is well
known that unconditional energy stability (energy decays in time regardless of the size of the time step)
provides a fidelity check in practical numerical simulations. In recent work (Li, D. (2022b, Why large time-
stepping methods for the Cahn–Hilliard equation is stable. Math. Comp., 91, 2501–2515)), a type of semi-
implicit scheme for the Cahn–Hilliard (CH) equation with regular potential was developed satisfying the
energy-decay property. In this paper, we extend such semi-implicit schemes to the Allen–Cahn equation
and the fractional CH equation with a rigorous proof of similar energy stability. Models in two spatial
dimensions are discussed.
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1. Introduction

1.1 Introduction to the models and historical review

In this work we consider two classic phase field models: Allen–Cahn (AC) and Cahn–Hilliard (CH)
equations. The (AC) model was developed in Allen & Cahn (1972) by Allen and Cahn to study the
competition of crystal grain orientations in an annealing process separation of different metals in a binary
alloy; while the (CH) was introduced in Cahn & Hilliard (1958) by Cahn and Hilliard to describe the
process of phase separation of different metals in a binary alloy. These equations are presented as follows:

{
∂tu = νΔu − f (u), (x, t) ∈ Ω × (0, ∞),

u(x, 0) = u0,
(AC)

and {
∂tu = Δ(−νΔu + f (u)), (x, t) ∈ Ω × (0, ∞),

u(x, 0) = u0,
(CH)

where u(x, t) is a real valued function and values of u in (−1, 1) represent a mixture of the two phases,
with −1 representing the pure state of one phase and +1 representing the pure state of the other phase.
Vector position x is in the spatial domain Ω , which is oftentimes taken to be two or three dimensional
periodic domain and t is the time variable. Here ν is a small parameter and we denote ε = √

ν to represent
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2 X. CHENG

an average distance over which phases mix. The energy term f (u) is often chosen to be

f (u) = F′(u) = u3 − u, F(u) = 1

4
(u2 − 1)2.

It is well known that, as ε → 0, the limiting problem of (AC) is given by a mean curvature flow while the
limiting problem of (CH) becomes Mullins–Sekerka problem; we refer to Ilmanen (1993) for AC and
Pego (1989); Alikakos et al. (1994) for CH and a recent work for matrix-valued AC Fei et al. (2023).
Both asymptotic and rigorous analysis are well-studied. For the other related models, the well-posedness
of the fractional CH equation has been analyzed by Akagi et al. in Akagi et al. (2016) and Vázquez
(2012, 2014) by Vázquez; the mass-conserving AC equation has been studied by Bronsard and Stoth in
Bronsard & Stoth (1997); the time-fractional CH equation has been studied by Fritz et al. in Fritz et al.
(2022); the logarithmic potential case have been studied by Li and Tang in Li & Tang (2021). Although
the limiting behavior of these models are well known, there are related materials science models that are
studied only numerically and this current work presents an idea about how to approach these models in
an appropriate way numerically.

In this paper, we consider the spatial domain Ω to be the two dimensional 2π -periodic torus
T2 = (R/2πZ)2. In fact, our proof can be applied to more general settings such as Dirichlet and
Neumann boundary conditions in a bounded domain. However, considering the periodic domain allows
the use of efficient and accurate Fourier-spectral numerical methods; moreover, periodic domain is often
appropriate for application questions, which involve the formation of micro-structure away from physical
boundaries.

As is well known, the mass of the smooth solution of CH (CH) is conserved, i.e., d
dt M(t) ≡ 0, M(t) =∫

Ω
u(x, t) dx. This represents the conservation of the two phases in the mixture. In particular, M(t) ≡ 0 if

M(0) = 0 and hence oftentimes zero-mean initial data (equal amounts of both phases) will be considered
as a simpler, but representative case. The associated energy functional of (CH) is given by

E(u) =
∫

Ω

(
1

2
ν|∇u|2 + F(u)

)
dx. (1.1)

The energy is often referred to as Ginzburg–Landau energy and in fact, the AC equation is also governed
by the same energy, but AC is a L2 gradient flow whereas CH is a H−1 gradient flow. More specifically,
assume that u(x, t) is a smooth solution with zero mean, one can deduce

d

dt
E(u(t)) +

∫
Ω

|∇(−νΔu + f (u))|2 dx = 0,

which implies the decay of the energy: d
dt E(u(t)) ≤ 0. This thus provides an a priori H1-norm bound and

since the scaling-critical space for (CH) is L2 in 2D and Ḣ
1
2 in 3D, therefore (CH) admits a unique global

solution following from standard global well-posedness theory. In this sense, the energy decay property
is an important index for whether a numerical scheme is ‘stable’ or not. In comparison, AC equation
does not share the mass conservation property; however, it still follows the energy decay property with
the same energy functional. Moreover, the solution to the fractional CH equation (FCH) satisfies both
mass conservation and energy properties; see Bosch & Stoll (2015) and Ainsworth & Mao (2017) for
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 3

example. The fractional CH equation (FCH) is defined as the following:

⎧⎨⎩ ∂tu = νΔ
(
(−Δ)αu + (−Δ)α−1f (u)

)
, 0 < α ≤ 1

u(x, 0) = u0.
(FCH)

The difficulty in dealing with this FCH model arises from the non-local behavior of the fractional
Laplacian, where the fractional Laplacian on the torus is given from the Fourier side: for x ∈ Td,
(−Δ)αf (x) = 1

(2π)d

∑
k∈Zd |k|2α f̂ (k) e−ik·x. The convention of Fourier series is given in the next section.

Various approaches have been developed to study numerical simulations on CH and related models.
For example, in Gavish et al. (2012) and Christlieb et al. (2014), Christlieb et al. and Gavish et al. studied
several gradient flow models using implicit time stepping methods, respectively; in He et al. (2007), He
et al. studied large time stepping semi-discretized method for CH equation and proved the conditional
energy stability; Xu and Tang studied large time stepping methods for epitaxial growth models in Xu &
Tang (2006); Shen et al. studied energy stable schemes for several phase field models in Chen & Shen
(1998) and Zhu et al. (1999); Bertozzi et al. studied biharmonic-modified forward time stepping methods
for fourth order equation in Bertozzi et al. (2011); Eyre developed convex splitting method in Eyre
(1998); Cai, Sun, Wang and Yang studied Cahn–Hilliard–Navier–Stokes System using finite element
methods in Cai et al. (2023); Bai, Li and Wu developed low regular schemes in Bai et al. (2022); Bueno-
Orovio, Kay and Burrage developed Fourier spectral methods for fractional reaction-diffusion equations
in Bueno-Orovio et al. (2014).

Moreover, many other work studied related models numerically among which different approaches
are applied to the time stepping including fully explicit (forward Euler scheme Bertozzi et al. (2011)),
fully implicit (backward Euler) scheme Cheng et al. (2021a), semi-implicit (implicit-explicit) scheme
Chen & Shen (1998); He et al. (2007); Li et al. (2022a); Liu et al. (2023), finite element scheme Feng &
Prohl (2004); Li (2022a); Cai et al. (2023), convex splitting scheme Eyre (1998) and operator splitting
schemes Li et al. (2022c,d). Different strategies are adopted for the spatial discretization including the
Fourier-spectral method Chen & Shen (1998); He et al. (2007); Bueno-Orovio et al. (2014); Cheng
et al. (2021b); Li et al. (2022b); Li (2022b); Wu & Yuan (2023). All the numerical approximations give
accurate results to the values and qualitative features of the solution. One of the key features is the energy
dissipation.

We hereby give a list of work in the historical review. From the analysis point of view, Feng and Prohl
in Feng & Prohl (2004) introduced a semi-discrete in time and fully spatially discrete finite element
method for CH equation(CH) where they obtained an error bound of size of powers of 1/ν. Explicit
time-stepping schemes require strict time-step restrictions and do not obey energy decay in general. To
guarantee the energy decay property and increase the time step, a good alternative is to use semi-implicit
schemes in which the linear term is implicit (such as backward time differentiation) and the nonlinear
term is treated explicitly. Having only a linear implicit at every time step has computational advantages,
as suggested in Chen & Shen (1998), Chen and Shen considered a semi-implicit Fourier-spectral scheme
for (CH). On the other hand, semi-implicit schemes can lose stability for large time steps and thus smaller
time steps are needed in practice. To resolve this problem, semi-implicit methods with better stability
have been introduced, e.g. Zhu et al. (1999); Xu & Tang (2006); He et al. (2007); Shen & Yang (2010a);
Li et al. (2022a); Li (2022b). Specifically speaking, Zhu et al. (1999); Xu & Tang (2006); He et al. (2007)
and Shen & Yang (2010b) give different semi-implicit Fourier-spectral schemes, which involve different
stabilizing terms of different sizes, that preserve the energy decay property (we say these schemes are
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4 X. CHENG

‘energy stable’). However, those works either require a strong Lipschitz condition on the nonlinear source
term, or require certain L∞ bounds on the numerical solutions.

In the seminal works Li & Tang (2021); Li et al. (2022a); Li (2022b), Li et al. developed a large
time-stepping semi-implicit Fourier-spectral scheme for CH equation and proved that it preserves energy
decay with no a priori assumptions (unconditional stability). The proof uses tools from harmonic analysis
in Bourgain & Li (2015a,b), and introduces a novel energy bootstrap scheme in order to obtain a L∞-
bound of the numerical solution. Their scheme for (CH) has the form:

⎧⎪⎨⎪⎩
un+1 − un

τ
= −νΔ2un+1 + AΔ(un+1 − un) + ΠNΔ(f (un)), n ≥ 0

u0 = ΠNu0.

(1.2)

Here τ is the time step and A is a large coefficient for the O(τ ) stabilizing term. As a result of their
work, the energy decay can still be satisfied with a well-chosen large number A, with at least a size of
O(1/ν|log(ν)|2), or c/ν|log(ν)|2 for some positive constant c that depends on the initial conditions. This
is not surprising, in fact Wu et al. obtained similar results in tumor growth model in Wu et al. (2014).

However, the methods in Li & Tang (2021); Li et al. (2022a) and Li (2022b) cannot be applied to
the AC equation (AC) directly: this is due to the lack of mass conservation. The main contribution of our
work is to extend their first-order semi-implicit scheme to the related AC equation (AC). Following the
same path the fractional CH equation (FCH) can be studied as well. To be more specific, we consider
the following stabilized semi-implicit scheme for (AC):

⎧⎪⎨⎪⎩
un+1 − un

τ
= νΔun+1 − A(un+1 − un) − ΠNf (un)

u0 = ΠNu0,

(1.3)

where τ is the time step and A > 0 is the coefficient for the O(τ ) regularization term. For N ≥ 2, we
define

XN = span
{

cos(k · x), sin(k · x) : k = (k1, k2) ∈ Z2, |k|∞ = max{|k1|, |k2|} ≤ N
}

.

Define the L2 projection operator ΠN : L2(Ω) → XN by (ΠNu − u, φ) = 0 ∀φ ∈ XN , where (·, ·)
denotes the L2 inner product on Ω . In other words, the projection operator ΠN is just the truncation
of Fourier modes |k|∞ ≤ N. ΠNu0 ∈ XN and by induction, we have un ∈ XN , ∀n ≥ 0. Similarly, the
semi-implicit scheme for (FCH) is given by the following:

⎧⎪⎨⎪⎩
un+1 − un

τ
= −ν(−Δ)α+1un+1 − (−Δ)αA(un+1 − un) − (−Δ)αΠNf (un)

u0 = ΠNu0.

(1.4)

We will show the numerical solutions in (1.3) and (1.4) are unconditionally energy stable and prove the
L2 error estimate.
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 5

1.2 Main results

Our main results state below:

THEOREM 1.1 (Unconditional energy stability for AC). Consider (1.3) with ν > 0 and assume u0 ∈
H2(T2). Then there exists a constant β0 depending only on the initial energy E0 = E(u0) such that if

A ≥ β ·
(
‖u0‖2

H2 + ν−1|log ν| + 1
)

, β ≥ β0

then E(un+1) ≤ E(un), ∀n ≥ 0 and for any choice of the time step τ , where E is defined in (1.1).

REMARK 1.1. Note that here in Theorem 1.1 no mean zero assumption is needed for u0 due to the lack
of mass conservation. The choice of A is not optimal, in fact as suggested by the numerical experiments
it suffices to choose A = O(1) because in practice the time step τ is small (at least < 1) and thus the
scheme gains better stability.

THEOREM 1.2. Let ν > 0. Let u0 ∈ Hs, s ≥ 4 and u(t) be the solution to the AC equation (AC) with
initial data u0. Let un be the numerical solution with initial data ΠNu0 in (1.3). Assume A satisfies the
same condition in Theorem 1.1. Define tm = mτ , m ≥ 1. Then

‖um − u(tm)‖2 ≤ A · eC1tm · C2 · (N−s + τ
)

,

where C1 > 0 depends only on (u0, ν) and C2 depends on (u0, ν, s).

THEOREM 1.3 (Unconditional energy stability for FCH). Consider (1.4) with ν > 0 and assume u0 ∈
H2(T2) and obeys the zero-mean condition. Then there exists a constant β0 depending only on the initial
energy E0 = E(u0) such that if

A ≥ β ·
(
‖u0‖2

H2 + ν−1|log ν| + 1
)

, β ≥ β0

then E(un+1) ≤ E(un), ∀n ≥ 0 and for any time step τ . Here E is defined above in (1.1).

REMARK 1.2. Here in Theorem 1.3, we require a zero-mean assumption on u0 which implies un has mean
zero for each n. This assumption will guarantee that negative fractional Laplacian is well defined. Here
we use the notation |∇|−α = (−Δ)− α

2 to denote the fractional Laplacian.

REMARK 1.3. It is worth mentioning that the stability results above in Theorem 1.1 and Theorem 1.3 are
valid for any time step τ . Our choice of A is independent of τ as long as it has size of O (1/ν|log(ν)|).
Note that the choice of A may not be optimal and further work can be done in this direction.

THEOREM 1.4. Let ν > 0. Let u0 ∈ Hs, s ≥ 4+4α and u(t) be the solution to the fractional CH equation
(FCH) with initial data u0. Let un be the numerical solution with initial data ΠNu0 in (1.4). Assume A
satisfies the same condition in Theorem 1.3. Define tm = mτ , m ≥ 1. Then

‖um − u(tm)‖2 ≤ A · eC1tm · C2 · (N−s + τ
)

,

where C1 > 0 depends only on (u0, ν, α) and C2 depends on (u0, ν, α, s).
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6 X. CHENG

The proof of Theorem 1.4 is very similar to the proof of Theorem 1.2, therefore we leave it to the
readers.

REMARK 1.4. As a remark, in the fractional CH case, as α → 0, (FCH) becomes the zero-mass projected
AC equation and for α = 1, it coincides the original CH equation. Roughly speaking, the fractional
CH equation is an interpolation of the zero-mass projected AC and CH equations. Here the zero-mass
projected AC equation is defined as follows:{

∂tu = Π0 (νΔu − f (u))

u(x, 0) = u0,
(1.5)

where Π0 is the zero mass projector, i.e., Π0(g) = g − ∫
Ω

g dx, or = 1
(2π)d

∑
|k|≥1 ĝ(k) eik·x from the

Fourier side. The difference between (AC) and the zero-mass projected AC equation (1.5) results from
the loss of mass conservation.

REMARK 1.5. More general cases can be discussed. To be more specific by defining a general ‘gradient’
operator G, we can rewrite the equation as follows:{

∂tu = G (νΔu − f (u))

u(x, 0) = u0.
(1.6)

When G = id, the identity map, (1.6) becomes the AC equation; when G = (−Δ)α , (1.6) becomes the
fractional CH equation as discussed above. And the corresponding semi-implicit scheme is⎧⎪⎨⎪⎩

un+1 − un

τ
= G

(
νΔun+1 − f (un)

)
− AG(un+1 − un), n ≥ 0

u0 = u0.

(1.7)

The main result of this paper states that for any fixed time step τ , we can always define a large constant
A independent of τ in (1.7), such that the numerical solution will be stable in the sense of satisfying the
energy-decay condition for ‘gradient’ cases of AC and fractional CH in 2D. In fact, our method holds
for more general cases including AC on 3D and higher order schemes; we postpone the discussion to a
subsequent work.

1.3 Organization of the presenting paper

The presenting paper is organized as follows. In Section 2, we list the notation and preliminaries including
several useful lemmas. The energy stability of the semi-implicit scheme of the 2D AC will be shown in
Section 3 while the error estimate is given in Section 4. The fractional CH case will be discussed in
Section 5.

2. Notation and preliminaries

Throughout this paper, for any two (non-negative in particular) quantities X and Y , we denote X � Y if
X ≤ CY for some constant C > 0. Similarly, X � Y if X ≥ CY for some C > 0. We denote X ∼ Y
if X � Y and Y � X. The dependence of the constant C on other parameters or constants are usually
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 7

clear from the context and we will often suppress this dependence. We shall denote X �Z1,Z2,··· ,Zk
Y if

X ≤ CY and the constant C depends on the quantities Z1, · · · , Zk.
For any two quantities X and Y , we shall denote X � Y if X ≤ cY for some sufficiently small

constant c. The smallness of the constant c is usually clear from the context. The notation X � Y is
similarly defined. Note that our use of � and � here is different from the usual Vinogradov notation in
number theory or asymptotic analysis.

For a real-valued function u : Ω → R we denote its usual Lebesgue Lp-norm by

‖u‖p = ‖u‖Lp(Ω) =
⎧⎨⎩
(∫

Ω
|u|p dx

) 1
p , 1 ≤ p < ∞;

esssupx∈Ω |u(x)|, p = ∞.
(2.1)

Similarly, we use the weak derivative in the following sense: For u, v ∈ L1
loc(Ω), (i.e they are locally

integrable); ∀φ ∈ C∞
0 (Ω), i.e φ is infinitely differentiable (smooth) and compactly supported; and∫

Ω

u(x) ∂αφ(x) dx = (−1)α1+···+αn

∫
Ω

v(x) φ(x) dx,

then v is defined to be the weak partial derivative of u, denoted by ∂αu. Suppose u ∈ Lp(Ω) and all weak
derivatives ∂αu exist for |α| = α1 + · · · + αn ≤ k, such that ∂αu ∈ Lp(Ω) for |α| ≤ k, then we denote
u ∈ Wk,p(Ω) to be the standard Sobolev space. The corresponding norm of Wk,p(Ω) is:

‖u‖Wk,p(Ω) =
⎛⎝∑

|α|≤k

∫
Ω

|∂αu|p dx

⎞⎠
1
p

.

For p = 2 case, we use the convention Hk(Ω) to denote the space Wk,2(Ω). We often use Dmu to
denote any differential operator Dαu for any |α| = m: D2 denotes ∂2

xixj
u for 1 ≤ i, j ≤ d, as an example.

In this paper we use the following convention for Fourier expansion on Td:

f (x) = 1

(2π)d

∑
k∈Zd

f̂ (k) eik·x, f̂ (k) =
∫

Ω

f (x) e−ik·x dx.

Taking advantage of the Fourier expansion, we use the well-known equivalent Hs-norm and Ḣs-semi-
norm of function f by

‖f ‖Hs = 1

(2π)d/2

⎛⎝∑
k∈Zd

(1 + |k|2s)|f̂ (k)|2
⎞⎠

1
2

, ‖f ‖Ḣs = 1

(2π)d/2

⎛⎝∑
k∈Zd

|k|2s|f̂ (k)|2
⎞⎠

1
2

.

LEMMA 2.1 (Sobolev inequality on Td). Let 0 < s < d and f ∈ Lq(Td) for any d
d−s < p < ∞, then

‖ 〈∇〉−s f ‖Lp(Td) �s,p,d ‖f ‖Lq(Td), where
1

q
= 1

p
+ s

d
,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf010/8100282 by Fudan U
niversity user on 05 M

ay 2025



8 X. CHENG

where 〈∇〉−s denotes (1 − Δ)− s
2 and A �s,p,d B is defined as A ≤ Cs,p,d B where Cs,p,d is a constant

dependent on s, p and d.

REMARK 2.1. Note that the this Sobolev inequality is a variety of the standard version. Note that on the
Fourier side the symbol of 〈∇〉−s is given by (1 + |k|2)− s

2 . In particular, ‖f ‖∞(Td) � ‖f ‖H2(Td), known
as Morrey’s inequality. We refer the readers to Evans (2022) for the proof.

LEMMA 2.2 (Discrete Grönwall’s inequality). Let τ > 0 and yn ≥ 0, αn ≥ 0, βn ≥ 0 for n = 1, 2, 3 · · · .
Suppose

yn+1 − yn

τ
≤ αnyn + βn, ∀ n ≥ 0.

Then for any m ≥ 1, we have

ym ≤ exp

(
τ

m−1∑
n=0

αn

)(
y0 + τ

m−1∑
k=0

βk

)
.

The proof of this lemma is standard; cf. Clark (1987).

3. Stability of a first-order semi-implicit scheme on the 2D AC equation

Recall that the AC equation (AC) is formulated as follows:{
∂tu = νΔu − f (u)

u(x, 0) = u0.

Here f (u) = u3 − u, a regular potential, and the spatial domain Ω is taken to be the two dimensional
2π−periodic torus T2. The corresponding energy is defined by E(u) = ∫

Ω
(ν

2 |∇u|2 + F(u)) dx, where
F(u) = 1

4 (u2 − 1)2, the anti-derivative of f (u). As is well known, the energy satisfies E(u(t)) ≤
E(u(s)), ∀ t ≥ s, which gives an a priori bound. Recall that we consider the stabilized semi-implicit
scheme (1.3): ⎧⎪⎨⎪⎩

un+1 − un

τ
= νΔun+1 − A(un+1 − un) − ΠNf (un)

u0 = ΠNu0.

(3.1)

We aim to show Theorem 1.1. To start with we first introduce a log-type interpolation inequality:

LEMMA 3.1 (Log-type interpolation). For all f ∈ Hs(T2), s > 1, then

‖f ‖∞ ≤ Cs ·
(
‖f ‖Ḣ1

√
log(‖f ‖Ḣs + 3) + |f̂ (0)| + 1

)
.

Here Cs is a constant that only depends on s.
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 9

Proof. To prove the lemma, we write f (x) = 1
(2π)2

∑
k∈Z2 f̂ (k) eik·x, i.e., the Fourier series of f , which

converge pointwisely to f . It then follows that

‖f ‖∞ ≤ 1

(2π)2

∑
k∈Z2

|f̂ (k)|

≤ 1

(2π)2

⎛⎝|f̂ (0)| +
∑

0<|k|≤N

|f̂ (k)| +
∑

|k|>N

|f̂ (k)|
⎞⎠

� |f̂ (0)| +
∑

0<|k|≤N

(|f̂ (k)‖k| · |k|−1) +
∑

|k|>N

(|f̂ (k)‖k|s · |k|−s)

� |f̂ (0)| +
⎛⎝ ∑

0<|k|≤N

|f̂ (k)|2|k|2
⎞⎠

1
2

·
⎛⎝ ∑

0<|k|≤N

|k|−2

⎞⎠
1
2

+
⎛⎝∑

|k|>N

|f̂ (k)|2|k|2s

⎞⎠
1
2

·
⎛⎝∑

|k|>N

|k|−2s

⎞⎠
1
2

� |f̂ (0)| + 1

Ns−1

⎛⎝∑
|k|>N

|f̂ (k)|2|k|2s

⎞⎠
1
2

+
⎛⎝ ∑

0<|k|≤N

|f̂ (k)|2|k|2
⎞⎠

1
2

·√log(N + 3)

� |f̂ (0)| + 1

Ns−1 ‖f ‖Ḣs +√log(N + 3)‖f ‖Ḣ1 .

If ‖f ‖Ḣs ≤ 3, we can simply take N = 1; otherwise take Ns−1 close to ‖f ‖Ḣs . As a remark, this
lemma can be viewed as a variation of the well-known log-type Bernstein’s inequality; cf. Bahouri et al.
(2011). �

We will prove Theorem 1.1 by induction. To start with, let us recall the numerical scheme (1.3):

un+1 − un

τ
= νΔun+1 − A(un+1 − un) − ΠNf (un).

Here ΠN is truncation of Fourier modes of L2 functions to |k|∞ ≤ N. Multiply the equation by (un+1−un)

and integrate over Ω , one has

1

τ

∫
T2

|un+1 − un|2 = ν

∫
T2

Δun+1(un+1 − un) − A
∫
T2

|un+1 − un|2 −
(
ΠNf (un), un+1 − un

)
.

Because un is periodic, (as un ∈ XN), hence by integration by parts, we have

(
1

τ
+ A

)∫
T2

|un+1 − un|2 + ν

∫
T2

∇un+1∇(un+1 − un) = −
(
ΠNf (un), un+1 − un

)
.
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10 X. CHENG

Note ∇un+1∇(un+1 − un) = 1
2

(|∇un+1|2 − |∇un|2 + |∇(un+1 − un)|2), we have

(
1

τ
+ A

)∫
T2

|un+1− un|2 + ν

2

∫
T2

|∇un+1|2 − |∇un|2 + |∇(un+1− un)|2 = −
(
ΠNf (un), un+1 − un

)
.

Moreover, every un ∈ XN , we have(
1

τ
+ A

)∫
T2

|un+1 − un|2 + ν

2

∫
T2

|∇un+1|2 − |∇un|2 + |∇(un+1 − un)|2 = −
(

f (un), un+1 − un
)

.

To proceed, by the fundamental theorem of calculus and integration by parts,

F(un+1) − F(un) = f (un)(un+1 − un) +
∫ un+1

un
f ′(s)(un+1 − s) ds

= f (un)(un+1 − un) +
∫ un+1

un
(3s2 − 1)(un+1 − s) ds

= f (un)(un+1 − un) + 1

4
(un+1 − un)2

(
3(un)2 + (un+1)2 + 2unun+1 − 2

)
.

Combine previous two equations, and denote E(un) by En we have(
1

τ
+ A

)
‖un+1 − un‖2

L2 + ν

2
‖∇(un+1 − un)‖2

L2 + ν

2
‖∇un+1‖2

L2 − ν

2
‖∇un‖2

L2

+
∫
T2

F(un+1) − F(un) = 1

4

(
(un+1 − un)2, 3(un)2 + (un+1)2 + 2unun+1 − 2

)
Note

ν

2
‖∇un+1‖2

L2 +
∫
T2

F(un+1) = E(un+1) = En+1

�⇒
(

1

τ
+ A + 1

2

)
‖un+1 − un‖2

L2 + ν

2
‖∇(un+1 − un)‖2

L2 + En+1 − En

= 1

4

(
(un+1 − un)2, 3(un)2 + (un+1)2 + 2unun+1

)
≤ ‖un+1 − un‖2

L2

(
‖un‖2∞ + 1

2
‖un+1‖2∞

)
.

To show En+1 ≤ En, clearly it suffices to show

1

τ
+ A + 1

2
≥ 3

2
max

{
‖un‖2∞, ‖un+1‖2∞

}
. (3.2)

Note that E0 = E(ΠNu0) while E0 = E(u0) and in general E0 �= E0. Then the following statement
holds.
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 11

LEMMA 3.2. Suppose E0 = E(ΠNu0) and E0 = E(u0) as defined above, the following inequality holds:

sup
N

E(ΠNu0) � 1 + E0, where u0 ∈ H1(T2).

Proof. We rewrite ΠNu0 as 1
(2π)2

∑
|k|≤N û0(k) eik·x, namely the Dirichlet partial sum of u0.

‖∇ (ΠNu0

) ‖2
L2(T2)

= 1

(2π)2

∑
|k|≤N

|k|2|û0(k)|2 ≤ 1

(2π)2

∑
|k|∈Z2

|k|2|û0(k)|2 = ‖∇ (u0

) ‖2
L2(T2).

On the potential energy part, by the Sobolev inequality Lemma 2.1, ‖u0‖L4(T2) � ‖u0‖H1(T2), this
shows u0 ∈ L4(T2) and hence the Dirichlet partial sum ΠNu0 converges to u0 in L4(T2). This leads
to supN ‖ΠNu0‖L4(T2) < ∞. By the Uniform Boundedness Principle, we derive supN ‖ΠN‖ < ∞, i.e.,
supN ‖ΠNu0‖L4(T2) ≤ c‖u0‖L4(T2) for an absolute constant c. Combining the two estimates above we
prove the claim. It is also worth mentioning that the same claim holds for the 3D case with a similar
proof. �

We rewrite the numerical scheme (1.3) as follows:

un+1 = 1 + Aτ

1 + Aτ − ντΔ
un − τ

1 + Aτ − ντΔ
ΠN[f (un)]. (3.3)

By the interpolation lemma (Lemma 3.1), to control ‖un+1‖∞ and ‖un‖∞, we may consider Ḣ1-norm

and Ḣ
3
2 -norm together with 0th-mode |ûn+1(0)|. We start by estimating |ûn+1(0)|,

|ûn+1(0)| ≤ |ûn(0)| + τ

1 + Aτ
|f̂ (un)(0)|

≤ |ûn(0)| + 1

A
|f̂ (un)(0)|

≤
∣∣∣∣∫

T2
un dx

∣∣∣∣+ ∣∣∣∣∫
T2

un − (un)3 dx

∣∣∣∣
� 1 +

∣∣∣∣∫
T2

(un)2 dx

∣∣∣∣ 1
2 +

∣∣∣∣∫
T2

(1 − (un)2)2 dx

∣∣∣∣ 1
2

� 1 + √
En .

LEMMA 3.3. There is an absolute constant c1 > 0 such that for any n ≥ 0⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖un+1‖

Ḣ
3
2 (T2)

≤ c1 ·
(

A + 1

ν
+ 1

ντ

)
· (En + 1)

‖un+1‖Ḣ1(T2) ≤
(

1 + 1

A
+ 3

A
‖un‖2∞

)
· ‖un‖Ḣ1(T2).
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12 X. CHENG

Proof. As 0th-mode will not contribute to Ḣ1 norm and Ḣ
3
2 norm, we can just consider Fourier modes

|k| ≥ 1 from the Fourier side.
Use the symbol f � g to denote f ≤ c · g with c being a constant. We then obtain that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 + Aτ)|k| 3
2

1 + Aτ + ντ |k|2 � 1 + Aτ

ντ

τ |k| 3
2

1 + Aτ + ντ |k|2 � τ

τν
|k|− 1

2 = 1

ν
|k|− 1

2 .

Hence

‖un+1‖
Ḣ

3
2 (T2)

�
(

1 + Aτ

ντ

)
‖un‖L2(T2) + 1

ν
‖〈∇〉− 1

2 f (un)‖L2(T2). (3.4)

Here the notaion
〈∇〉s = (1 − Δ)

s
2 , corresponds to the Fourier side (1 + |k|2)s/2. Note that

‖un‖L2(T2) �
∫
T2

1

4
(u4 − 2u2 + 1) dx + 1 � En + 1

by Cauchy–Schwarz inequality. On the other hand, by the Sobolev inequality,

‖〈∇〉− 1
2 f (un)‖L2(T2) � ‖f (un)‖

L
4
3 (T2)

= ‖(un)3 − un‖
L

4
3 (T2)

=
(∫

T2
((un)3 − un)

4
3 dx

) 3
4

� En + 1.

Therefore, (3.4) becomes

‖un+1‖
Ḣ

3
2 (T2)

�
(

1 + Aτ

ντ
+ 1

ν

)
(En + 1).

Similarly, we get ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 + Aτ)|k|

1 + Aτ + ντ |k|2 � |k|

τ |k|
1 + Aτ + ντ |k|2 � τ

τA
|k| = 1

A
|k|.

This implies

‖un+1‖Ḣ1(T2) � ‖un‖Ḣ1(T2) + 1

A
‖f (un)‖Ḣ1(T2)

� ‖un‖Ḣ1(T2) + 1

A
‖∇(f (un))‖L2(T2)

� ‖un‖Ḣ1(T2) + 1

A
‖(3(un)2 − 1) · (∇un)‖L2(T2)
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 13

� ‖un‖Ḣ1(T2) +
(

1

A
+ 3‖u‖2∞

A

)
‖un‖Ḣ1(T2)

�
(

1 + 1

A
+ 3‖u‖2∞

A

)
‖un‖Ḣ1(T2).

�

Proof of Theorem 1.1. Now we will complete the proof for Theorem 1.1 by induction:

Step 1: the induction n → n + 1 step. Assuming En ≤ En−1 ≤ · · · ≤ E0 and En ≤ supN E(ΠNu0), we

will show En+1 ≤ En. This implies ‖un‖2
Ḣ1 = ‖∇un‖2

L2 ≤ 2En

ν
≤ 2E0

ν
.

By Lemma 3.1, use the notation f �E0 g to denote that f ≤ C(E0) · g for some constant C(E0)

depending only on E0, we have

‖un‖2∞ � ‖un‖2
Ḣ1

(√
log

(
3 + c1

(
1

ντ
+ A + 1

ν

)
(En + 1)

))2

+ En + 1

� 2E0

ν

(
1 + log(A) + log

(
1

ν

)
+
(

log

(
1 + 1

τ

)))
+ E0 + 1

�E0 ν−1
(

1 + log(A) + log

(
1

ν

))
+ ν−1|log(τ )| + 1. (3.5)

Define m0 := ν−1 (1 + log(A) + |log(ν)|), and note that E0 ≤ supN E(ΠNu0) � E0 + 1, the inequality
above (3.5) is then estimated as follows:

‖un‖2∞ �E0
m0 + ν−1|log(τ )| + 1.

On the other hand by Lemma 3.3,

‖un+1‖∞ � 1 + ‖un+1‖Ḣ1

√
log

(
3 + ‖un+1‖

Ḣ
3
2

)

� 1 +
(

1 + 1 + ‖un‖2∞
A

)
‖un‖Ḣ1

√
log

(
3 + ‖un+1‖

Ḣ
3
2

)

�E0 1 +
(

1 + m0 + ν−1|log(τ )|
A

)(√
1

ν

√
log

(
3 + ‖un+1‖

Ḣ
3
2

)

�E0 1 +
(

1 + m0 + ν−1|log(τ )|
A

)(√
m0 + ν−1|log(τ )|

)

�E0 1 +
√

m0 + ν−1|log(τ )| +
(√

m0 + ν−1|log(τ )|
)3

A

�E0

√
1 + m3

0

A2
+ m0 + ν−3|log(τ )|3. (3.6)
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14 X. CHENG

The sufficient condition (3.2) thus becomes⎧⎪⎪⎨⎪⎪⎩
A + 1

2
+ 1

τ
≥ C(E0)

(
m0 + 1 + m3

0

A2 + ν−3|log(τ )|3
)

m0 = ν−1 (1 + log(A) + |log(ν)|) .

We now discuss two cases.

Case 1: 1
τ

≥ C(E0)ν
−3|log(τ )|3. In this case, we need to choose A such that

A �E0
m0 = ν−1 (1 + log(A) + |log(ν)|),

where B �E0
D means there exists a large constant depending only on E0. In fact, for ν � 1, we can take

A �E0
1; if 0 < ν � 1, we will choose A = CE0

· ν−1|log ν|, where CE0
is a large constant depending

only on E0. Therefore it suffices to choose

A = CE0
· max

{
ν−1|log(ν)|, 1

}
. (3.7)

Case 2: 1
τ

≤ C(E0)ν
−3|log(τ )|3. This implies |log(τ )| �E0

1 + |log(ν)|. Going back to equations
(3.5), we have

‖un‖2∞ �E0
m0,

as ν−1|log(τ )| will be absorbed by m0, where m0 = ν−1 (1 + log(A) + |log(ν)|). Hence substituting this
new bound into (3.6), we get

‖un+1‖∞ � 1 +
(

1 + ‖un‖2∞
A

)
‖un‖Ḣ1

√
log
(

3 + ‖un+1‖
Ḣ

3
2

)
�E0

1 +
(

1 + m0

A

)√1

ν

√
log
(

3 + ‖un+1‖
Ḣ

3
2

)
�E0

1 +
(

1 + m0

A

)√
m0

�E0

√
1 + m3

0

A2 + m0.

This shows it suffices to take

A ≥ CE0
m0,

for a large enough constant CE0
depending only on E0. The same choice of A in Case 1 (with a larger

CE0
if necessary) will still work.
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 15

Step 2: we check the induction base step n = 1. Clearly we only need to check

A + 1

2
+ 1

τ
≥ ‖ΠNu0‖2∞ + 1

2
‖u1‖2∞.

By Lemma 3.3,

‖u1‖Ḣ1 ≤
(

1 + 1

A
+ 3

A
‖ΠNu0‖2∞

)
· ‖u0‖Ḣ1

≤
(

1 + 1

A
+ 3

A
‖ΠNu0‖2∞

)
·
√

2E0

ν
.

As a result,

‖u1‖∞ � 1 + |û1(0)| + ‖u1‖Ḣ1

√
log
(

3 + ‖u1‖
Ḣ

3
2

)

� 1 +
√

E0 +
(

1 + 1

A
+ 3

A
‖ΠNu0‖2∞

)√
2E0

ν

√
log

(
3 + c1

(
A + 1

ν
+ 1

ντ

)
(E0 + 1)

)

�E0 1 +
(

1 + 1

A
+ 3

A
‖ΠNu0‖2∞

)
· ν− 1

2 ·√1 + log(A) + |log(ν)| + |log(τ )|

�E0

(
1 + 1

A
+ 3

A
‖ΠNu0‖2∞

)
· ν− 1

2 ·√1 + log(A) + |log(ν)| + |log(τ )|.

Thus, we need to choose A such that

A + 1

2
+ 1

τ
≥ ‖ΠNu0‖2∞ + CE0

·
(

1 + 1

A
+ 3

A
‖ΠNu0‖2∞

)2

· ν−1

· (1 + log(A) + |log(ν)| + |log(τ )|) ,

where CE0
is a large constant depending only on E0. Note that by Morrey’s inequality,

‖ΠNu0‖L∞(T2) � ‖ΠNu0‖H2(T2) � ‖u0‖H2(T2).

Then it suffices to take A such that

A �E0
‖u0‖2

H2 + ν−1|log(ν)| + 1. (3.8)

This completes the induction and hence proves the theorem. �
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16 X. CHENG

4. L2 error estimate of the first-order semi-implicit scheme for the 2D AC equation

In this section, we will like to study the L2 error between the semi-implicit numerical solution and the
exact PDE solution to the AC equation in the domain T2 and eventually prove Theorem 1.2. To start
with, we consider the auxiliary L2 error estimate for near solutions.

4.1 Auxiliary L2 error estimate for near solutions

Consider the following auxiliary system un and vn for the first-order scheme:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

un+1 − un

τ
= νΔun+1 − ΠNf (un) − A(un+1 − un) + G1

n

vn+1 − vn

τ
= νΔvn+1 − ΠNf (vn) − A(vn+1 − vn) + G2

n

u0 = u0, v0 = v0.

(4.1)

We define that Gn = G1
n − G2

n.

PROPOSITION 4.1. For solutions of (4.1), assume for some N1 > 0,

sup
n≥0

(‖∇un‖L2 + ‖∇vn‖L2 + ‖vn‖∞) ≤ N1.

Then for any m ≥ 1,

‖um − vm‖2
2 ≤ exp

(
mτ ·

(
C(1 + N4

1)

ν
+ ν

))

·
(

(1 + Aτ) ‖u0 − v0‖2
2 + τν

2

m−1∑
n=0

‖Gn‖2
2

)
, (4.2)

where C > 0 is an absolute constant.

Proof. Write en = un − vn. Then

en+1 − en

τ
= νΔen+1 − A(en+1 − en) − ΠN

(
f (un) − f (vn)

)+ Gn.

Taking L2-inner product with en+1 on both sides and recalling similar computations in previous section,
we have

1

2τ

(
‖en+1‖2

L2 − ‖en‖2
L2 + ‖en+1 − en‖2

L2

)
+ ν‖∇en+1‖2

L2 + A

2
(‖en+1‖2

L2 − ‖en‖2
L2

+ ‖en+1 − en‖2
L2) =

(
Gn, en+1

)
+
(

f (un) − f (vn), ΠNen+1
)

,
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 17

where (. .) denotes the L2 inner product and the last term is because ΠN is a self-adjoint operator(
ΠNf , g

) = (f , ΠNg
)
, since it is just an Nth Fourier mode truncation. By Hölder’s inequality, we obtain

that

∣∣∣(Gn, en+1
)∣∣∣ ≤ ‖en+1‖L2‖Gn‖L2 ≤ 1

2

(
ν‖Gn‖2

L2 + ‖en+1‖2
L2

ν

)
.

Next, by the fundamental theorem of calculus, we have

f (un) − f (vn) =
∫ 1

0
f ′(vn + sen) ds en

= (a1 + a2(v
n)2)en + a3vn(en)2 + a4(e

n)3,

where ai are constants can be computed. Note that we will denote C to be an absolute constant whose
value may vary in different lines:∣∣∣((a1 + a2(v

n)2)en, en+1
)∣∣∣ ≤ C(1 + ‖vn‖2∞)‖en+1‖L2‖en‖L2

≤ ν

3
‖en‖2

L2 + C(1 + N4
1)

ν
‖en+1‖2

L2 ,

by the Cauchy–Schwarz inequality. Moreover, the other two terms can be estimated similarly:∣∣∣(a3vn(en)2, en+1
)∣∣∣ ≤ C‖vn‖∞‖en+1‖L2‖en‖2

L4

≤ CN1‖en‖L2‖∇en‖L2‖en+1‖L2

≤ ν

3
‖en‖2

L2 + CN4
1

ν
‖en+1‖2

L2 ,

by the Sobolev embedding: H1(T2) ↪→ L4(T2). Similarly, we have∣∣∣(a4(e
n)3, en+1

)∣∣∣ ≤ C‖en+1‖L2‖en‖3
L6

≤ C‖en‖L2‖∇en‖2
L2‖en+1‖L2

≤ ν

3
‖en‖2

L2 + CN4
1

ν
‖en+1‖2

L2 .

To simplify the formula, we sometimes use the notation ‖u‖2 to denote the L2 norm. Collecting all
estimates, we get

‖en+1‖2
2 − ‖en‖2

2

τ
+ A

(
‖en+1‖2

2 − ‖en‖2
2

)
≤ ν

2
‖Gn‖2

2 + ν‖en‖2
2 + C

(
1 + N4

1

)
ν

‖en+1‖2
2,
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18 X. CHENG

where C is an absolute constant that can be computed exactly. Recalling that A is chosen larger than
O(ν−1|log ν|) for ν small, we derive that

‖en+1‖2
2 − ‖en‖2

2

τ
+
(

A − C(1 + N4
1)

ν

)(
‖en+1‖2

2 − ‖en‖2
2

)
≤ ν

2
‖Gn‖2

2 +
(

C(1 + N4
1)

ν
+ ν

)
‖en‖2

2.

Define

yn =
(

1 +
(

A − C(1 + N4
1 )

ν

)
τ

)
‖en‖2

2,

α =
C
(

1 + N4
1

)
ν

+ ν,

βn = ν

2
‖Gn‖2

2.

Then for ν small, we have

yn+1 − yn

τ
≤ αyn + βn.

Applying discrete Grönwall’s inequality in Lemma 2.2, we have

‖um − vm‖2
2 =‖em‖2

2 ≤ ym

≤ exp

(
mτ ·

(
C(1 + N4

1 )

ν
+ ν

))

·
⎛⎝(1 +

(
A − C(1 + N4

1 )

ν

)
τ

)
‖u0 − v0‖2

2 + τν

2

m−1∑
n=0

‖Gn‖2
2

⎞⎠
≤ exp

(
mτ ·

(
C(1 + N4

1 )

ν
+ ν

))

·
⎛⎝(1 + Aτ) ‖u0 − v0‖2

2 + τν

2

m−1∑
n=0

‖Gn‖2
2

⎞⎠ . (4.3)

�

4.2 L2 error estimate of the 2D AC equation

In this section, to simplify the notation, we will write x � y if x ≤ C(ν, u0) y for a constant C, depending
on ν and u0. We consider the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

un+1 − un

τ
= νΔun+1 − ΠNf (un) − A(un+1 − un)

∂tu = νΔu − f (u)

u0 = ΠNu0, u(0) = u0.

(4.4)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf010/8100282 by Fudan U
niversity user on 05 M

ay 2025



SEMI-IMPLICIT SCHEMES FOR AC AND FCH 19

In order to prove Theorem 1.2, it is clear that we shall estimate Gn introduced in (4.1) from the previous
proposition. Note that for a one-variable function h(t), one has the formula:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

τ

∫ tn+1

tn
h(t) = h(tn) + 1

τ

∫ tn+1

tn
h′(t) · (tn+1 − t) dt

1

τ

∫ tn+1

tn
h(t) = h(tn+1) + 1

τ

∫ tn+1

tn
h′(t) · (tn − t) dt.

(4.5)

Using the formula (4.5) above and integrating the AC equation (AC) on the time interval [tn, tn+1], we
get

u(tn+1) − u(tn)

τ
= νΔu(tn+1) − A

(
u(tn+1) − u(tn)

)
− ΠNf (u(tn)) − Π>Nf (u(tn)) + Gn, (4.6)

where Π>N = id − ΠN , the large mode truncation operator, and

Gn = ν

τ

∫ tn+1

tn
∂tΔu · (tn − t) dt − 1

τ

∫ tn+1

tn
∂t(f (u))(tn+1 − t) dt + A

∫ tn+1

tn
∂tu dt. (4.7)

To bound ‖Gn‖2, we introduce some useful lemmas.

4.3 Bounds on the AC exact solution and numerical solution

LEMMA 4.1 (Maximum principle for smooth solutions to the AC equation). Let T > 0, d ≤ 3 and assume
u ∈ C2

x C1
t (T

d × [0, T]) is a classical solution to AC equation with initial data u0. Then

‖u(., t)‖∞ ≤ max{‖u0‖∞, 1}, ∀0 ≤ t ≤ T .

REMARK 4.1. As proved in Elliott & Zheng (1986), there exists a global H4
x C1

t solution to AC equation.
In fact, as pointed out by Li et al. in Li & Tang (2021); Li (2022b), the regularity will be better due to
the smoothing effect. Therefore, we may assume a smooth solution and the proof can be found in the
appendix.

LEMMA 4.2 (Hk boundedness of the exact solution). Assume u(x, t) is a smooth solution to the AC
equation in Td with d = 1, 2, 3 and the initial data u0 ∈ Hk(Td) for k ≥ 2. Then,

sup
t≥0

‖u(t)‖Hk(Td) �k 1, (4.8)

where we omit the dependence on ν and u0.

This lemma can be proved through the smoothing effect of the parabolic operator and we provide an
alternative proof for the sake of completeness in the appendix.
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20 X. CHENG

LEMMA 4.3 (Discrete version Hk boundedness). Suppose u0 ∈ Hk(Td) with d ≤ 3 and k ≥ 2. Then,
suppose un is the numerical solution that satisfies⎧⎪⎨⎪⎩

un+1 − un

τ
= νΔun+1 − A(un+1 − un) − ΠNf (un)

u0 = ΠNu0,

then

sup
n≥0

‖un‖Hk(Td) �A,k 1.

REMARK 4.2. The bound on un is independent of time step τ and truncation number N.

REMARK 4.3. The Hk−boundedness for the exact solution and the numerical solution is similar in the
sense that a smoothing effect will take place after a short time period. We postpone the proof in the
appendix.

4.4 Proof of L2 error estimate of 2D AC equation

Proof of Theorem 1.2. By Lemma 4.3, supn≥0 ‖un‖∞ � 1 using Morrey’s inequality. Thus, the
assumptions of Proposition 4.1 (auxiliary L2 error estimate proposition) are satisfied. Recall that

Gn = ν

τ

∫ tn+1

tn
∂tΔu · (tn − t) dt − 1

τ

∫ tn+1

tn
∂t(f (u))(tn+1 − t) dt + A

∫ tn+1

tn
∂tu dt.

Then we can estimate that

‖Gn‖2 �
∫ tn+1

tn
‖∂tΔu‖2 dt +

∫ tn+1

tn
‖∂t(f (u))‖2 dt + A

∫ tn+1

tn
‖∂tu‖2 dt

�
∫ tn+1

tn
‖∂tΔu‖2 dt +

∫ tn+1

tn
‖∂tu‖2 dt ·

(
A + ‖f ′(u)‖L∞

t L∞
x

)
:= I1 + I2. (4.9)

Note that ∂tu = νΔu − u + u3 and hence by Lemma 4.2,

‖∂tu‖2 � 1, ‖f ′(u)‖∞ � 1.

Recall the energy decay property:

dE

dt
= −‖∂tu‖2

2.
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 21

This shows ∫ ∞
0

‖∂tu‖2
2 dt � 1.

Also note that by Lemma 4.2, we have ∫ T

0
‖∂tΔu‖2

2 dt � 1 + T .

Therefore, we can estimate (4.9) as follows

I1 =
∫ tn+1

tn
‖∂tΔu‖2 dt �

(∫ tn+1

tn
‖∂tΔu‖2

2 dt

) 1
2 · √

τ .

Similarly for I2, we obtain that

I2 � (1 + A) ·
∫ tn+1

tn
‖∂tu‖2 dt � (1 + A) ·

(∫ tn+1

tn
‖∂tu‖2

2 dt

) 1
2 · √

τ .

Hence for tm ≥ 1,

m−1∑
n=0

‖Gn‖2
2 �

m−1∑
n=0

(
(I1)2 + (I2)2

)

�
m−1∑
n=0

(
τ

∫ tn+1

tn
‖∂tΔu‖2

2 dt + (1 + A)2τ

∫ tn+1

tn
‖∂tu‖2

2 dt

)

� τ

∫ tm

0
‖∂tΔu‖2

2 dt + (1 + A)2τ

∫ tm

0
‖∂tu‖2

2 dt

� τ(1 + tm) + (1 + A)2τ

� (1 + A)2τ · (1 + tm). (4.10)

On the other hand, by the high Sobolev bound lemma (Lemma 4.2) supt≥0 ‖u(t)‖Hs �s 1, we have
supn≥0 ‖f (u(tn))‖Hs �s 1. We can then derive that

‖�>Nf (u(tn))‖2
2 =

∑
|k|>N

∣∣∣ ̂f (u(tn))(k)
∣∣∣2

≤
∑

|k|>N

|k|2s
∣∣∣ ̂f (u(tn))(k)

∣∣∣2 · |k|−2s

� N−2s ·
∑

|k|>N

|k|2s
∣∣∣ ̂f (u(tn))(k)

∣∣∣2
� N−2s · ‖f (u(tn))‖2

Hs

� N−2s ,
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22 X. CHENG

thus

m−1∑
n=0

‖Π>Nf (u(tn))‖2
2 �s m · N−2s � tmN−2s

τ
.

Therefore,

τ

m−1∑
n=0

(
‖Gn‖2

2 + ‖Π>Nf (u(tn))‖2
2

)
�s (1 + tm)(τ 2 + N−2s)(1 + A)2.

Similarly, we have

‖u0 − u(0)‖2
2 = ‖ΠNu0 − u0‖2

2 � N−2s.

Applying the auxiliary solutions estimate in Proposition 4.1 and noting that tm = mτ , we can get

‖um − u(tm)‖2
2 �s (1 + A)2eCtm

(
N−2s + τ · N−2s + (1 + tm)(τ 2 + N−2s)

)
.

Note that ⎧⎨⎩ τ · N−2s � τ 2 + N−4s � τ 2 + N−2s

1 + tm � eC′tm ,

which leads to

‖um − u(tm)‖2
2 �s (1 + A)2eCtm

(
N−2s + τ 2

)
.

Thus,

‖um − u(tm)‖2 ≤ (1 + A) · C2 · eC1tm
(
N−s + τ

)
, (4.11)

where C1 > 0 is a constant, depending on ν u0; C2 > 0 is a constant, depending on s, ν and u0. This
completes the proof of L2 error estimate. �

5. Stability of a first-order semi-implicit scheme for the 2D fractional CH equation

In this section, we will show Theorem 1.4. As mentioned earlier, the fractional CH equation behaves as
an ‘interpolation’ between AC equation and original CH equation:{

∂tu = νΔ
(
(−Δ)αu + (−Δ)α−1f (u)

)
, 0 < α ≤ 1

u(x, 0) = u0.

In this section, we stick to the same region, two dimensional 2π -periodic torus T2 = R2/2πZ2. f (u) =
u3 − u and the energy E(u) = ∫

T2

(
ν
2 |∇u|2 + F(u)

)
dx, with F(u) = 1

4 (u2 − 1)2. Recall that the
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 23

semi-implicit scheme (1.4) is given by the following:⎧⎪⎨⎪⎩
un+1 − un

τ
= −ν(−Δ)α+1un+1 − (−Δ)αA(un+1 − un) − (−Δ)αΠNf (un)

u0 = ΠNu0.

Proof of Theorem 1.4. The proof adopts a similar computation given in previous section. We recall the
scheme (1.4):

un+1 − un

τ
= −ν(−Δ)α+1un+1 − (−Δ)αA(un+1 − un) − (−Δ)αΠNf (un).

Now we multiply the equation by (−Δ)−α(un+1 − un) and apply the fundamental theorem of calculus
as in section 3. We then obtain

1

τ
‖|∇|−α(un+1 − un)‖2

L2 + ν

2

(
‖∇(un+1 − un)‖2

L2 + ‖∇un+1‖2
L2 − ‖∇un‖2

L2

)
+A‖un+1 − un‖2

L2 = −
(

f (un), un+1 − un
)

.

This then implies that

1

τ
‖|∇|−α(un+1 − un)‖2

L2 + ν

2
‖∇(un+1 − un)‖2

L2 +
(

A + 1

2

)
‖un+1 − un‖2

L2 + En+1 − En

≤ ‖un+1 − un‖2
L2

(
‖un‖2∞ + 1

2
‖un+1‖2∞

)
. (5.1)

It is clear that the first two norms 1
τ
‖|∇|−α(un+1 −un)‖2

L2 and ν
2 ‖∇(un+1 −un)‖2

L2 will be hard to control

as we will expect more help from ‖un+1 − un‖2
L2 . �

LEMMA. 5.1. There exists a constant Cαντ that is determined by α, ν and τ , such that

1

τ
‖|∇|−α(un+1 − un)‖2

L2(T2)
+ ν

2
‖∇(un+1 − un)‖2

L2(T2)
≥ Cαντ‖un+1 − un‖2

L2(T2)
.

Proof. It is natural to examine the above norms 1
τ
‖|∇|−α(un+1 − un)‖2

L2(T2)
and ν

2 ‖∇(un+1 − un)‖2
L2(T2)

on the Fourier side. Then we obtain that

1

τ

∑
k �=0

|k|−2α|ûn+1(k) − ûn(k)|2 + ν

2

∑
k �=0

|ûn+1(k) − ûn(k)|2

=
∑
k �=0

|ûn+1(k) − ûn(k)|2 ·
( |k|−2α

τ
+ ν|k|2

2

)
.
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24 X. CHENG

We apply standard Young’s inequality for product to estimate: ab ≤ aγ

γ
+ bβ

β
, with 1

γ
+ 1

β
= 1. We then

take a = |k|p, b = |k|q, where p + q = 0. To fulfill the condition, we choose γ , β, p and q as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p = −2α

α + 1

q = 2α

α + 1

γ = α + 1

β = α + 1

α
.

�⇒
{ − 2α = pγ

2 = qβ

Therefore, we have

{
aγ = |k|pγ = |k|−2α

bβ = |k|qβ = |k|2.

As a result, we obtain that

∑
k �=0

|ûn+1(k) − ûn(k)|2 ·
( |k|−2α

τ
+ ν|k|2

2

)

=
∑
k �=0

|ûn+1(k) − ûn(k)|2 ·
[

α + 1

τ
·
( |k|−2α

α + 1

)
+ ν(α + 1)

2α
·
(

|k|2
α+1
α

)]

≥
∑
k �=0

|ûn+1(k) − ûn(k)|2 ·
(

α + 1

τ

) 1
α+1 ·

(
ν(α + 1)

2α

) α
α+1

.

Clearly it suffices to take Cατν =
(

α+1
τ

) 1
α+1 ·

(
ν(α+1)

2α

) α
α+1

. �
Back to the proof of Theorem 1.3, (5.1) leads to

(
A + 1

2
+ Cατν

)
‖un+1 − un‖2

L2 + En+1 − En ≤ ‖un+1 − un‖2
L2

(
‖un‖2∞ + 1

2
‖un+1‖2∞

)
.

To prove En+1 ≤ En, it suffices to show A + 1
2 + Cατν ≥ 3

2 max
{‖un+1‖2∞, ‖un‖2∞

}
. We rewrite the

scheme (1.4) as

un+1 = 1 + Aτ(−Δ)α

1 + τν(−Δ)α+1 + Aτ(−Δ)α
un − τ(−Δ)α

1 + τν(−Δ)α+1 + Aτ(−Δ)α
ΠN[f (un)].
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 25

Similarly, we can still apply Lemma 3.1 under the assumption u0 satisfies zero-mean condition. Recall
that

‖un+1‖∞ � ‖un+1‖Ḣ1

√
log(‖un+1‖

Ḣ
3
2

+ 3).

We will estimate ‖un+1‖Ḣ1 and ‖un+1‖
Ḣ

3
2

. As we did in section 3,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + Aτ |k|2α

1 + Aτ |k|2α + ντ |k|2+2α
· |k| � |k|

τ |k|2α

1 + Aτ |k|2α + ντ |k|2+2α
· |k| � τ

τA
|k| = 1

A
|k|.

Hence we derive

‖un+1‖Ḣ1(T2) �
(

1 + 1

A
+ 3‖u‖2∞

A

)
‖un‖Ḣ1(T2),

which is the same argument as before. Similarly, we can derive

‖un+1‖
Ḣ

3
2 (T2)

�
(

1 + Aτ

ντ
+ 1

ν

)
(En + 1).

We then prove by induction again.

Step 1: the induction n → n + 1 step. Assume En ≤ En−1 ≤ · · · ≤ E0 and En ≤ supN E(ΠNu0), we

will show En+1 ≤ En. This implies ‖un‖2
Ḣ1 = ‖∇un‖2

L2 ≤ 2En

ν
≤ 2E0

ν
. By applying the main lemma

carefully and E0 � E0 + 1,

‖un‖2∞ �E0
ν−1 (1 + log(A) + |log(ν)|) + ν−1|log(τ )| + 1.

Define m0 := ν−1 (1 + log(A) + |log(ν)|), then the inequality above can be written as

‖un‖2∞ �E0
m0 + ν−1|log(τ )| + 1. (5.2)

Similarly,

‖un+1‖2∞ �E0
1 + m3

0

A2 + m0 + ν−3|log(τ )|3. (5.3)

Therefore, we require the following condition:⎧⎪⎪⎨⎪⎪⎩
A + 1

2
+
(

α + 1

τ

) 1
α+1 ·

(
ν(α + 1)

2α

) α+1
α ≥ C(E0)

(
m0 + 1 + m3

0

A2
+ ν−3|log(τ )|3

)

m0 = ν−1 (1 + log(A) + |log(ν)|) .
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26 X. CHENG

Now we discuss two cases again:

Case 1: (α+1
τ

)
1

α+1 · (
ν(α+1)

2α
)

α+1
α ≥ C(E0)ν

−3|log(τ )|3. In this case, it suffices to choose A such
that

A �E0
m0 = ν−1 (1 + log(A) + |log(ν)|).

In fact, for ν � 1, we can take A �E0
1; if 0 < ν � 1, we will choose A = CE0

· ν−1|log ν|, where CE0
is a large constant depending only on E0. Therefore, in both cases, it suffices to choose

A = CE0
· max

{
ν−1|log(ν)|, 1

}
.

Case 2:(α+1
τ

)
1

α+1 · (
ν(α+1)

2α
)

α+1
α ≤ C(E0)ν

−3|log(τ )|3. This implies ( 1
τ
)

1
α+1 � ( 1

ν
)−4− 1

α , hence
|log(τ )| �E0

1 + |log(ν)| for fixed 0 < α ≤ 1. Now going back to equations (5.2), we have

‖un‖2∞ �E0
m0

as ν−1|log(τ )| will be dominated by m0, recall that m0 = ν−1 (1 + log(A) + |log(ν)|). Substituting this
new bound to (5.3), we derive that

‖un+1‖2∞ �
(

1 +
(

1 + ‖un‖2∞
A

)
‖un‖Ḣ1

√
log
(

3 + ‖un+1‖
Ḣ

3
2

))2

�E0

(
1 +

(
1 + m0

A

)(√1

ν

√
log
(

3 + ‖un+1‖
Ḣ

3
2

) ))2

�E0

(
1 +

(
1 + m0

A

)√
m0

)2

�E0
1 + m3

0

A2
+ m0.

Thus, it suffices to take

A ≥ CE0
m0. (5.4)

For the induction base Step 2, the proof is exactly the same as in Section 3 and this shows stability
of the semi-implicit scheme in the fractional CH case. �

6. Numerical experiments

In this section, we present several numerical results. To begin with we present numerical evidence that
show the necessity of the stabilizers.
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SEMI-IMPLICIT SCHEMES FOR AC AND FCH 27

TABLE 1. Choice of centers and radii

xi −π
2 − 3π

4 −π
2 0 π

2 0 π
2

yi −π
2 −π

4
π
4 − 3π

4 − 3π
4 0 π

2

ri
π
5

2π
15

2π
15

π
10

π
10

π
4

π
4

6.1 A benchmark computation with different A-values

In this subsection we perform numerical experiments for some benchmark initial data. We first vary the
choice of the stabilizers, namely we put A = 0, 0.01, 1 for AC and FCH equations. Moreover, we fix the
parameters in this subsection as ν = 0.01, τ = 0.1, Nx = Ny = 256 and the initial data u0 is given
basically ‘supported’ in seven circles as below:

u0(x, y) = −1 +
7∑

i=1

f0

(√
(x − xi)

2 + (y − yi)
2 − ri

)
, (6.1)

where

f0(s) =
{

2e
− ν

s2 , if s < 0;

0, otherwise.

The centers and radii of the chosen circles are given in the Table 1 above.
The AC equation: the cases A = 0 (left) and 1 (right) can be found in Fig. 1. As you can tell, in

practice the usual semi-implicit scheme (A = 0) can guarantee the energy dissipation with ν = 0.01,
τ < 1 and ‖u0‖∞ ≤ 1 already. The patterns obey the curvature motion as desired. The main reason
behind this phenomena could be the maximum principle of AC, which is the main difference between AC
and CH as mentioned earlier. We refer the readers to the discussion on the effective maximum principles
by Li in Li (2021).

The fractional CH equation: the cases A = 0 (left) and 0.1 (middle) can be found in Fig. 2. Unlike
the AC case, especially for small ν = 0.001, the stabilizer A is necessary if the time step τ is not too
small. We see that both cases show instability of the schemes with small A. On the other hand, the case
A = 1 (right) in Fig. 2 indicates that the patterns follow the Mullins–Sekerka flow as expected.

6.2 More dynamics and energy evolution with smaller time steps

In this section, we present more dynamics of the FCH using scheme 1.4 (in comparison with the usual
first-order semi-implicit scheme) with smaller time steps. In fact, AC equations are more stable; cf.
Fig. 1 below. In Fig. 3, we present the dynamics of 2D fractional CH equation using scheme (1.4), where
α = 0.9, ν = 0.01, A = 0 (the usual semi-implicit method), τ = 0.01, Nx = Ny = 256 and the initial
data u0 = 0.1 sin(x) sin(y). We also present the dynamics with A = 1. Comparing these two schemes we
see that the stabilized scheme is accurate when the time step is small in a fixed time period. On the other
hand, a small time step also allows us to choose small stabilizer A. We refer the readers to Li (2021) and
Li (2022b) for more discussion.
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FIG. 1. Dynamics of 2D AC equation using the (stablized) semi-implicit scheme (1.3), where ν = 0.01, τ = 0.1, Nx = Ny = 256
and the initial data u0 is given in (6.1). A = 0 (left), A = 1 (right). The dynamics are almost the same and energy dissipates in
both cases.

FIG. 2. Dynamics of 2D fractional CH equation using the (stablized) semi-implicit scheme (1.4), where α = 0.5, ν = 0.001,
τ = 0.1, Nx = Ny = 256 and the initial data u0 is given in (6.1). A = 0 (left), A = 0.1 (middle). Both cases show instability of
the schemes with small A. The case A = 1 (right) indicates energy stability.
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FIG. 3. Dynamics of 2D CH equation using the scheme (1.4), where α = 0.9, ν = 0.01, τ = 0.01, Nx = Ny = 256 and the
initial data u0 = 0.1 sin(x) sin(y). A = 0 (left), A = 1 (right), we see that the patterns are very similar and follow the Mullins–
Sekerka flow.

7. Concluding remarks

Throughout this paper, we discussed certain first-order semi-implicit Fourier spectral methods on the
AC equation and the fractional CH equation in a two-dimensional torus. We proved the stability (energy
decay) of the first-order numerical scheme by adding a stabilizing term A(un+1−un) and (−Δ)αA(un+1−
un) with a large constant A at least of size O(ν−1|log(ν)|). Note that this stability is preserved independent
of time step τ . We also proved an L2 error estimate between numerical solutions from the semi-implicit
scheme and exact solutions.

In the future work, more cases can be discussed on other gradient cases (as mentioned in Remark 1.5)
such as general nonlocal AC and CH equations, MBE equations, Cahn–Hilliard–Navier–Stokes system
and other equations describing phenomena of interest in material sciences. Higher order schemes and
more nonlinear numerical framework will be considered.
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Appendix A. Proof of Lemma 4.1

Proof of Lemma 4.1. We define f (x, t) = u(x, t)2 and f ε(x, t) = f (x, t) − εt. Since f ε is a continuous
function on the compact domain Td × [0, T], it achieves maximum at some point (x∗, t∗), i.e.,

max
0≤t≤T ,
x∈Td

f ε(x, t) = f ε(x∗, t∗) := Mε .

We discuss several cases.

Case 1: 0 < t∗ ≤ T and Mε > 1. This shows ∇f ε(x∗, t∗) = 0, Δf ε(x∗, t∗) ≤ 0. Note that

∇f ε = 2u∇u, Δf ε = 2|∇u|2 + 2uΔu,

this shows ∇u(x∗, t∗) = 0, uΔu(x∗, t∗) < 0. However, we also have

∂tf
ε(x∗, t∗) = 2u(x∗, t∗)∂tu(x∗, t∗) − ε

= 2u(x∗, t∗)(νΔu(x∗, t∗) − u3(x∗, t∗) + u(x∗, t∗)) − ε

< −2u4(x∗, t∗) + 2u2(x∗, t∗) − ε

< −2

(
u2(x∗, t∗) − 1

2

)2

+ 1

2
− ε

< −ε < 0

as u2(x∗, t∗) > 1 by assumption. This contradicts the hypothesis that f ε achieves its maximum at (x∗, t∗).

Case 2: 0 < t∗ ≤ T and Mε ≤ 1. In this case, we obtain

max
0≤t≤T , x∈Td

f (x, t) ≤ 1 + εT ,

letting ε → 0, we obtain f (x, t) ≤ 1.

Case 3: t∗ = 0, then

max
0≤t≤T , x∈Td

f (x, t) ≤ max
x∈Td

f (x, 0) + εT ,

sending ε to 0, we obtain f (x, t) ≤ f (x, 0). This concludes ‖u‖∞ ≤ max{‖u0‖∞, 1}. �

Appendix B. Proof of Lemma 4.2

Proof of Lemma 4.2. We write the solution u in the mild form

u(t) = eνtΔu0 +
∫ t

0
eν(t−s)Δ(u − u3) ds.

We will prove this argument inductively. By previous lemma 4.1, we have ‖u‖2 � 1 as ‖u‖∞ � 1 and
we will show ‖u‖H1 � 1 for any t ≥ 1. Then by taking the spatial derivative and L2 norm in the formula
above, we derive

‖Du‖2 ≤ ‖DeνtΔu0‖2 +
∫ t

0
‖Deν(t−s)Δ(u − u3)‖2 ds,

where Dmu denotes any differential operator Dαu for any |α| = m.
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First, we consider the nonlinear part.

‖Deν(t−s)Δ(u − u3)‖2 � ‖Deν(t−s)Δ(u − u3)‖∞ � |K1 ∗ (u − u3)|,

where K1 is the kernel corresponding to Deν(t−s)Δ. Therefore, we estimate that

|K1 ∗ (u − u3)| ≤ ‖K1‖2 · ‖u − u3‖2

� ‖K1‖2 · ‖u‖2

by the boundedness of ‖u‖∞. Note that

‖K1‖2 �

⎛⎝∑
k∈Zd

|k|2e−2ν(t−s)|k|2
⎞⎠

1
2

=
⎛⎝∑

|k|≥1

|k|2e−2ν(t−s)|k|2
⎞⎠

1
2

�
(∫ ∞

1
e−2ν(t−s)r2

rd+1 dr

) 1
2

.

The estimates for different dimensions are different. Now we will assume t ≥ 1 because the other case
t < 1 is much easier.

Case 1: d = 1.
∫∞

1 e−2ν(t−s)r2
r2 dr � e−2ν(t−s)

t−s + erf(
√

2ν(t−s))
(t−s)3/2 , where erf(x) := 2√

π

∫∞
x e−t2 dt, the

complementary error function. Letting γ = t − s,

∫ t

0
‖Deν(t−s)Δu‖2 ds �

(∫ t

0

e−νγ

γ 1/2 + (erf(
√

νγ ))1/2

γ 3/4 dγ

)
· ‖u‖2.

For γ small enough,
(erf(

√
νγ ))1/2

γ 3/4 will dominate the estimate and for γ away from 0, e−νγ

γ 1/2 shall dominate
the estimate. Then we split the integral as below (recall that t ≥ 1):

∫ t

0

e−νγ

γ 1/2 + (erf(
√

νγ )1/2)

γ 3/4 dγ �
∫ 1

0

1

γ 3/4 dγ +
∫ t

1

e−νγ

γ 1/2 dγ

� 1 +
∫ ∞

0

e−νγ

γ 1/2
dγ

� 1.
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Case 2: d = 2.
∫∞

1 e−2ν(t−s)r2
r3 dr � e−2ν(t−s)

(t−s)2 + e−2ν(t−s)

t−s . Similar to Case 1, we will split the integral
as well. Letting γ = t − s, we have∫ t

1

e−νγ

γ
+ e−νγ

γ 1/2
dγ �

∫ t

1

e−νγ

γ 1/2
dγ

�
∫ ∞

0

e−νγ

γ 1/2 dγ

� 1.

However, the estimate in Case 1 does not work for γ ≤ 1. Now we estimate ‖K1 ∗ (u − u3)‖L2(Td)

differently. We compute from the Fourier side:

‖K1 ∗ (u − u3)‖2
L2(Td)

=
∑
|k|≥1

|k|2 e−2ν(t−s)|k|2 |û − u3(k)|2

≤ max|k|≥1

{
|k|2 e−2ν(t−s)|k|2} ·

∑
|k|≥1

|û − u3(k)|2

� max|k|≥1

{
|k|2 e−2ν(t−s)|k|2} · ‖u‖2

L2(Td)
.

Define g(x) = x2 e−2νγ x2
, where x ≥ 0. Then,

g′(x) = 2x e−2νγ x2
(

1 − 2νγ x2
)

,

which shows the maximum is achieved at x = 1√
2νγ

and hence

g(x) ≤ g(
1√
2νγ

) � 1

γ
.

Therefore

‖Deν(t−s)Δ(u − u3)‖L2(Td) �
1√

t − s
‖u‖L2(Td).

Note that this proof works for any dimension. As a result,∫ 1

0
‖DeνγΔu‖2 dγ �

∫ 1

0

1√
γ

dγ · ‖u‖2 � 1.

This shows
∫ t

0 ‖Deν(t−s)Δu‖2 ds � 1.

Case 3: d = 3. As proved in previous case, we will only need to check the case γ ≥ 1. Note that∫∞
1 e−2νγ r2

r4 dr � e−2νγ

γ
for γ ≥ 1. This shows that∫ t

1

e−νγ

γ 1/2 dγ �
∫ ∞

0

e−νγ

γ 1/2 dγ

� 1.
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For the case where t ≤ 1, it is easier because we do not need to split the integral and all integrals from 0
to t can be bounded by the integral from 0 to 1.

Now for the linear part, by Duhamel’s Principle, eνtΔu0 denotes the solution to the heat equation.
As is well known, every spatial derivative of the solution eνtΔu0 solves the heat equation, hence by the
energy decay property, we have ‖eνtΔu0‖Hm � ‖u0‖Hm for any 1 ≤ m ≤ k. Combining the nonlinear
and linear parts, we obtain that ‖u‖H1 � 1 independent of t ≥ 0 and hence supt≥0 ‖u‖H1 � 1.

Assume that we have supt≥0 ‖u‖Hm−1 � 1, then the estimate follows by repeating the process above:

‖D(Dm−1u)‖2 ≤ ‖DeνtΔDm−1u0‖2 +
∫ t

0
‖Deν(t−s)ΔDm−1u‖2 ds

� ‖u0‖Hm +
∫ 1

0
‖DeνγΔDm−1u‖2 dγ +

∫ t

1
‖DeνγΔDm−1u‖2 dγ

� 1 +
∫ 1

0

1√
γ

dγ · ‖Dm−1u‖2 +
∫ ∞

0

e−νγ

√
γ

dγ · ‖Dm−1u‖2

� 1,

We finally obtain that

sup
t≥0

‖u‖Hk(Td) �k 1. (B.1)

�

Appendix C. Proof of Lemma 4.3

Proof of Lemma 4.3. To simplify the notation, we will use ‘�’ instead of ‘�ν,u0,A,k’ in the proof. We
will use a similar method to the one provided in Li & Tang (2021).

We can write the scheme as follows:

un+1 = 1 + Aτ

1 + Aτ − ντΔ
un + −τΠN

1 + Aτ − ντΔ
f (un)

:= L1(u
n) + L2(f (u

n))

= L1

(
L1un−1 + L2f (un−1)

)
+ L2f (un)

= Lm0+1
1 un−m0 +

m0∑
l=0

Ll
1L2f (un−l), (C.1)

where m0 will be chosen later. Similar to the continuous version, we prove inductively. To demonstrate
the idea, we first show from supn≥0 ‖un‖H1(Td) � 1 that

sup
n≥0

‖un‖H2(Td) � 1.

Indeed it suffices to control the Ḣ2 semi-norm. With no loss, we can assume τ < 1 (or we can assume
τ < C for some harmless constant C). We then discuss two cases:
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Case 1: Aτ ≥ 1
10 . Then for 0 �= k ∈ Zd:∣∣L̂1(k)

∣∣ = 1 + Aτ

1 + Aτ + ντ |k|2

≤ 11Aτ

Aτ + ντ |k|2

� 1

1 + |k|2 , (C.2)

and ∣∣L̂2(k)
∣∣ = τ

1 + Aτ + ντ |k|2 � 1

1 + |k|2 . (C.3)

We observe that the restriction Aτ ≥ 1
10 is crucial in (C2) and (C3), otherwise the inequalities will depend

on the size of τ . To conclude in this case, we first recall that from the energy dissipation supn≥0 ‖un‖H1 +
‖f (un)‖2 � 1. Then we can derive (by choosing m0 = n) that

‖un+1‖Ḣ2 ≤ ‖L1un‖Ḣ2 + ‖L2f (un)‖Ḣ2

� ‖un‖2 + ‖f (un)‖2

� 1. (C.4)

Case 2: Aτ < 1
10 . Take m0 to be the integer such that 1

2 ≤ m0τ < 1 and thus m0 ≥ 5.∣∣∣∣̂Lm0+1
1 (k)

∣∣∣∣ ≤ ( 1 + Aτ

1 + Aτ + ντ |k|2
)m0+1

≤
(

1 + Aτ

1 + Aτ + ντ |k|2
)m0

=
(

1 + ντ |k|2
1 + Aτ

)−m0

.

Recall Aτ < 1
10 < 1, then (

1 + ντ |k|2
1 + Aτ

)−m0

≤
(

1 + ντ |k|2
2

)−m0

,

define t0 := m0τ and we derive ∣∣∣∣̂Lm0+1
1 (k)

∣∣∣∣ ≤ (1 + 1

2
ν|k|2 t0

m0

)−m0

.

For any a > 0, we consider the function h(x) = −x log
(
1 + a

x

)
, x > 0. Then

h′(x) = − log
(

1 + a

x

)
+ a

a + x

h′′(x) = a

x + a

(
1

x
− 1

x + a

)
0.
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By direct computation, h(x) decreases on (0, ∞). Therefore, recalling m0 ≥ 5,∣∣∣∣̂Lm0+1
1 (k)

∣∣∣∣ ≤ (1 + 1

2
ν|k|2 t0

m0

)−m0

≤
(

1 + 1

2
ν|k|2 · t0

5

)−5

.

As a direct result, we have∣∣L̂2(k)
∣∣ · m0∑

l=0

∣∣L̂1(k)
∣∣l ≤ ∣∣L̂2(k)

∣∣ · 1

1 − ∣∣L̂1(k)
∣∣

= τ

1 + Aτ + ντ |k|2 · 1

1 − 1+Aτ
1+Aτ+ντ |k|2

= 1

ν|k|2

� 1

|k|2 .

Therefore for n ≥ m0,

‖un+1‖Ḣ2 � ‖un−m0‖2 + sup
0≤l≤m0

‖f (un−l)‖2 � 1.

For 1 ≤ n ≤ m0 + 1, we apply

un = Ln
1u0 +

n−1∑
l=0

Ll
1L2f (un−1−l).

Hence we get

‖un‖Ḣ2 � ‖u0‖Ḣ2 + sup
0≤l≤n−1

‖f (un−l−1)‖2 � 1.

By the energy decay property, the constant depends only on ν, u0 and A, we can conclude that

sup
n≥0

‖un‖H2(Td) � 1. (C.5)

To obtain higher Sobolev Hk norm control, we can repeat the bootstrap process above and derive the
desired result. Inductively, we can derive⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖un+1‖Ḣm � ‖un‖Ḣm−2 + ‖f (un)‖Ḣm−2 , Aτ ≥ 1

10
;

‖un+1‖Ḣm � ‖un−m0‖Ḣm−2 + sup
0≤l≤m0

‖f (un−l)‖Ḣm−2 , Aτ <
1

10
, n ≥ m0;

‖un‖Ḣm � ‖u0‖Ḣm + sup
0≤l≤n−1

‖f (un−l−1)‖Ḣm−2 , Aτ <
1

10
, n ≤ m0 + 1.

�
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