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Abstract
Thismanuscript focuses on a class of second order numerical schemes for certain phase
fieldmodels. It is known that phase fieldmodels are gradient flows therefore the energy
dissipates in time.As amatter of fact, numerical simulationswith unconditional energy
stability (energy decays in time regardless of the size of the time step) indicate good
stability. Recently several first order semi-implicit schemes for the Allen-Cahn and
Cahn-Hilliard equations were developed satisfying the energy-decay property. In this
paper the analysis will be extended to second order schemes for the two dimensional
Allen-Cahn equation with a rigorous proof of energy stability.
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1 Introduction

Partial differential equations (PDE) often describe mathematical models of physical,
biological phenomena. Among PDEs, phase field equations are models of essential
importance in the study of material sciences. Particularly, in this work we consider a
classic phase field models, the Allen-Cahn (AC equation. The (AC) model was devel-
oped in [1] by Allen and Cahn to study the competition of crystal grain orientations in
an annealing process separation of different metals in a binary alloy.More specifically,
the Allen-Cahn equation takes the form as follows:{

∂t u = ν�u − f (u), (x, t) ∈ � × (0,∞)

u(x, 0) = u0
, (AC)

where u(x, t) is a real valued function and the values of u are in (−1, 1) representing a
mixture of the two phases. −1 represents the pure state of one phase and +1 indicates
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the pure state of the other phase. In this paper we take the spatial domain � to be
the two dimensional periodic domain T

2 = (R/2πZ)2. Here ν is a small parameter,
occasionally we denote ε = √

ν to represent an average distance over which phases
mix. The nonlinearity f (u) is often chosen to be

f (u) = F ′(u) = u3 − u , F(u) = 1

4
(u2 − 1)2.

It is well known that, as ε → 0, the limiting problem of (AC) is driven by a mean
curvature flow and we refer the readers to [18] for the scalar AC and a recent work [15]
for thematrix-valuedAC,where asymptotic and rigorous analysis are provided.Unlike
the limiting behavior of AC, there are many other related materials science models
that are studied only numerically and one of the modest goals of this current work is
to present an idea on approaching these models in an appropriate way numerically.

As mentioned earlier, in this note we take the spatial domain� to be the two dimen-
sional 2π -periodic torusT

2 = (R/2πZ)2. It is worth mentioning that our proof can be
applied to more general settings such as Dirichlet and Neumann boundary conditions
in a 2D bounded domain. However, considering the periodic domain allows us to apply
the efficient and accurate Fourier-spectral numerical methods. Nevertheless, periodic
domain is very natural in practical problems, which usually involve the formation
of micro-structure away from physical boundaries. As is well-known that the (AC)
behaves as a gradient flow, therefore its energy dissipates in time. Here the associated
energy functional of (AC) is given by

E(u) =
∫

�

(
1

2
ν|∇u|2 + F(u)

)
dx . (1.1)

Assume that u(x, t) is a smooth solution, it is clear that

d

dt
E(u(t)) +

∫
�

|ν�u − f (u)|2 dx = 0,

which implies the decay of the energy: d
dt E(u(t)) ≤ 0. This thus provides an a priori

H1-norm bound and since the scaling-critical space for (AC) is L2 in 2D (and Ḣ
1
2

in 3D), the global well-posedness follow from standard energy estimates. Therefore
from the analysis point of view, the energy dissipation property is an important index
for whether a numerical scheme is “stable” or not.

Various approaches have been developed to study numerical simulations on Allen-
Cahn and other related phase field models, for example the fractional Cahn-Hilliard
equation has been analyzed by the author in [9], the mass-conserving AC equation
has been studied by Bronsard and Stoth in [6]. We refer the readers to [2, 3, 8, 10, 11,
13, 16, 17, 19, 22] for more discussion in other cases. Among which different time
stepping approaches are applied including the fully explicit (forward Euler) scheme,
fully implicit (backward Euler) scheme, finite element scheme and convex splitting
scheme; and different schemes are used for the spatial discretization including the
Fourier-spectral method and finite difference schemes. To guarantee the accuracy and
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stability, numerical approximations usually need to obey certain qualitative behaviors
and features. One of the key features is the energy dissipation or conservation as
mentioned earlier.

Starting from this point, we briefly go through the main related results in the liter-
ature. To start with, Feng and Prohl [16] introduced a semi-discrete in time and fully
spatially discrete finite element method for the Cahn-Hilliard equation (CH) where
they obtained an error bound of size of powers of 1/ν. Here CH is another classic
phase field model introduced in [7] by Cahn and Hilliard to describe the process of
phase separation of different metals in a binary alloy. However, explicit time-stepping
schemes usually require strict time-step restrictions and do not obey energy decay in
general. To guarantee the energy dissipation with bigger time steps, a good alternative
is to use semi-implicit schemes in which the linear term is implicit (such as backward
time differentiation) and the nonlinear term is treated explicitly. Having only a linear
implicit at every time step has computational advantages, as suggested in [8], Chen
and Shen considered a semi-implicit Fourier-spectral scheme for CH. On the other
hand, semi-implicit schemes can lose stability for large time steps and thus smaller
time steps are needed in practice. To resolve this problem, semi-implicit methods with
better stability have been introduced, cf. [20, 21]. To be more specific, this two works
study different semi-implicit Fourier-spectral schemes, which involved different sta-
bilizing terms of different size, that preserve the energy decay property (we say these
schemes are “energy stable”). However, those works either require a strong Lipschitz
condition on the nonlinear source term, or require certain L∞ bounds on the numerical
solutions.

In the seminal works [20, 21], Li developed a large time-stepping semi-implicit
Fourier-spectral scheme for Cahn-Hilliard equation and proved that it preserves energy
decaywith noa priori assumptions (unconditional stability). Theproof uses harmonic
analysis tools developed in [4, 5], and introduces a novel energy bootstrap scheme in
order to obtain a L∞-bound of the numerical solution. One of their schemes for CH
takes the following form:

⎧⎨
⎩

un+1 − un

τ
= −ν�2un+1 + A�(un+1 − un) + �( f (un)) , n ≥ 0

u0 = u0 .

(1.2)

Here τ is the time step and A is a large coefficient for the O(τ ) stabilizing term. As a
result of their work, the energy decay is satisfied with a well-chosen large number A,
with at least a size of O(1/ν| log(ν)|2). However, their arguments cannot be applied to
the Allen-Cahn equation (AC) directly: this is due to the lack of the mass conservation,
i.e. d

dt M(t) = 0, where M(t) = ∫
T2 u dx . A recent work by the author [9] then extends

their first order semi-implicit scheme to the related Allen-Cahn equation (AC) and the
more general non-local fractional Cahn-Hilliard equation. Following the same idea in
[9], in this work we show the arguments can be applied to second-order semi-implicit
schemes of theAllen-Cahn equation inT

2. In particular, we consider two second-order
schemes below.
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We first consider the following second order semi-implicit Fourier spectral scheme
I:

3un+1 − 4un + un−1

2τ
= ν�un+1 − Aτ(un+1 − un) − 	N

(
2 f (un) − f (un−1)

)
,

n ≥ 1 , (1.3)

where τ > 0 is the time step and this scheme applies second order backward derivative
in time with a second order extrapolation for the nonlinear term. To start the iteration,
we need to derive u1 according to the following first order scheme:

⎧⎪⎨
⎪⎩

u1 − u0

τ1
= ν�u1 − 	N f (u0) ,

u0 = 	N u0 ,

(1.4)

where τ1 = min{τ 4
3 , 1}. Such choice of τ1 is due to the error analysis and will be

shown later. Afterwards, we consider the second order scheme II:

3un+1 − 4un + un−1

2τ
= ν�un+1 − A(un+1 − 2un + un−1)

− 	N

(
2 f (un) − f (un−1)

)
, (1.5)

where τ > 0 is the time step and n ≥ 1. We again need to derive u1 according to the
following first order scheme:

⎧⎪⎨
⎪⎩

u1 − u0

τ1
= ν�u1 − 	N f (u0) ,

u0 = 	N u0 ,

(1.6)

where τ1 = min{τ 4
3 , 1 , 1√

A+1
}. The choice of such τ is to guarantee the error

estimate and to ensure that the new modified energy function can be controlled by the
initial data. In this work we will show the energy stability of Scheme I (1.3)–(1.4) and
Scheme II (1.5)–(1.6). Our main results state below:

Theorem 1 (Unconditional stability of Scheme I) Consider the scheme (1.3)–(1.4)
with ν > 0, τ > 0 and N ≥ 2. Assume u0 ∈ H2(T2). The initial energy is denoted
by E0 = E(u0). If there exists a constant βc > 0 depending only on E0 and ‖u0‖H2 ,
such that

A ≥ β · (ν2 + ν−10| log ν|4) , β ≥ βc ,

then

Ẽ(un+1) ≤ Ẽ(un) , n ≥ 1 ,
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where Ẽ(un) for n ≥ 1 is a modified energy functional and is defined as

Ẽ(un) := E(un) + ν

4
‖un − un−1‖22 + 1

4τ
‖un − un−1‖22 .

Theorem 2 (L2 error estimate of Scheme I) Let ν > 0 and u0 ∈ Hs, s ≥ 8. Let
0 < τ ≤ M for some M > 0. Let u(t) be the continuous solution to the 2D Allen-
Cahn equation with initial data u0. Let u1 be defined according to (1.4) with initial
data u0 = 	N u0. Let um, m ≥ 2 be defined in (1.3) with initial data u0 and u1.
Assume A satisfies the same condition in Theorem 1. Define t0 = 0, t1 = τ1 and
tm = τ1 + (m − 1)τ for m ≥ 2. Then for any m ≥ 1,

‖u(tm) − um‖2 ≤ C1 · eC2tm · (N−s + τ 2) ,

where C1 , C2 > 0 are constants depending only on (u0, ν, s, A, M).

Remark 1 Here we require that τ is not arbitrarily large. This is a result of loss of the
mass conservation as preserved by Cahn-Hilliard equation. However, in practice it is
not a big issue as we always use small time steps.

Theorem 3 (Conditional stability of Scheme II) Consider the scheme (1.5) – (1.6)
with ν > 0, τ > 0 and N ≥ 2. Assume u0 ∈ H2(T2). The initial energy is denoted
by E0 = E(u0). There exist constants Ci > 0, i = 1, 2, 3, 4 depending only on E0
and ‖u0‖H2 , such that the following holds:
Case 1: A = 0. If

τ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1
ν4

1 + | log ν|2 , when 0 < ν < 1 ;

C2
ν−2

1 + | log ν|2 , when ν ≥ 1 .

then

E̊(un+1) ≤ E̊(un) .

Case 2: A = constant · (ν4 + ν). If

τ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C3
ν2

1 + | log ν| , when 0 < ν < 1 ;

C4
ν−1

1 + | log ν| , when ν ≥ 1 .

then

E̊(un+1) ≤ E̊(un) .
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Here E̊(un) for n ≥ 1 is a modified energy functional and is defined as

E̊(un) := E(un) + A + 1

2
‖un − un−1‖22 + 1

4τ
‖un − un−1‖22 .

Remark 2 The L2 error estimate of Scheme II can be obtained via very similar argu-
ments as in Theorem 2 and we skip the details.

The presenting paper is organized as follows. In Section 2 we list the notation and
preliminaries including several useful lemmas. The energy stability of the second order
semi-implicit scheme I of the 2D Allen-Cahn will be shown in Section 3 and the error
estimate is given therein. The second order semi-implicit scheme II will be discussed
in Section 4.

2 Notation and preliminaries

Throughout this paper, for any two (non-negative in particular) quantities X and Y ,
we denote X � Y if X ≤ CY for some constant C > 0. Similarly X � Y if X ≥ CY
for some C > 0. We denote X ∼ Y if X � Y and Y � X . The dependence of the
constant C on other parameters or constants are usually clear from the context and we
will often suppress this dependence. We shall denote X �Z1,Z2,··· ,Zk Y if X ≤ CY
and the constant C depends on the quantities Z1, · · · , Zk .

For any two quantities X and Y , we shall denote X � Y if X ≤ cY for some
sufficiently small constant c. The smallness of the constant c is usually clear from the
context. The notation X  Y is similarly defined. Note that our use of � and 
here is different from the usual Vinogradov notation in number theory or asymptotic
analysis.

For a real-valued function u : � → R we denote its usual Lebesgue L p-norm by

‖u‖p = ‖u‖L p(�) =
{ (∫

�
|u|p dx

) 1
p , 1 ≤ p < ∞;

esssupx∈� |u(x)|, p = ∞.
(2.1)

Similarly, we use theweak derivative in the following sense: For u, v ∈ L1
loc(�), (i.e

they are locally integrable); ∀φ ∈ C∞
0 (�), i.e φ is infinitely differentiable (smooth)

and compactly supported; and

∫
�

u(x) ∂αφ(x) dx = (−1)α1+···+αn

∫
�

v(x) φ(x) dx,

then v is defined to be the weak partial derivative of u, denoted by ∂αu. Suppose
u ∈ L p(�) and all weak derivatives ∂αu exist for |α| = α1 + · · · + αn ≤ k , such that
∂αu ∈ L p(�) for |α| ≤ k, then we denote u ∈ W k,p(�) to be the standard Sobolev
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space. The corresponding norm of W k,p(�) is :

‖u‖W k,p(�) =
⎛
⎝ ∑

|α|≤k

∫
�

|∂αu|p dx

⎞
⎠

1
p

.

For p = 2 case, we use the convention Hk(�) to denote the space W k,2(�). We often
use Dmu to denote any differential operator Dαu for any |α| = m: D2 denotes ∂2xi x j

u
for 1 ≤ i, j ≤ d, as an example.

In this paper we use the following convention for Fourier expansion on T
d :

f (x) = 1

(2π)d

∑
k∈Zd

f̂ (k)eik·x , f̂ (k) =
∫

�

f (x)e−ik·x dx .

Taking advantage of the Fourier expansion, we use the well-known equivalent Hs-
norm and Ḣ s-semi-norm of function f by

‖ f ‖Hs = 1

(2π)d/2

⎛
⎝∑

k∈Zd

(1 + |k|2s)| f̂ (k)|2
⎞
⎠

1
2

,

| f ‖Ḣ s = 1

(2π)d/2

⎛
⎝∑

k∈Zd

|k|2s | f̂ (k)|2
⎞
⎠

1
2

.

Lemma 1 (Sobolev’s inequalities on T
d ) Let 0 < s < d and f ∈ Lq(Td) for any

d
d−s < p < ∞, then

‖ 〈∇〉−s f ‖L p(Td ) �s,p,d ‖ f ‖Lq (Td ) , where
1

q
= 1

p
+ s

d
,

where 〈∇〉−s denotes (1 − �)− s
2 and A �s,p,d B is defined as A ≤ Cs,p,d B where

Cs,p,d is a constant dependent on s, p and d.

Remark 3 Note that the this Sobolev inequality is a variety of the standard version.
Note that on the Fourier side the symbol of 〈∇〉−s is given by (1+|k|2)− s

2 . In particular,
‖ f ‖∞(Td ) � ‖ f ‖H2(Td ), known as Morrey’s inequality. We refer the readers to [14]
for the detailed proof.

Lemma 2 (Discrete Grönwall’s inequality) Let τ > 0 and yn ≥ 0, αn ≥ 0, βn ≥ 0 for
n = 1, 2, 3 · · · . Suppose

yn+1 − yn

τ
≤ αn yn + βn , ∀ n ≥ 0 .
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Then for any m ≥ 1, we have

ym ≤ exp

(
τ

m−1∑
n=0

αn

)(
y0 +

m−1∑
k=0

βk

)
.

Proof We refer the readers to [9] for the proof and skip the details here. ��
Lemma 3 (Maximum principle for smooth solutions to the Allen-Cahn equation) Let
T > 0, d ≤ 3 and assume u ∈ C2

x C1
t (Td ×[0, T ]) is a classical solution to Allen-Cahn

equation with initial data u0. Then

‖u(. , t)‖∞ ≤ max{‖u0‖∞ , 1} , ∀ 0 ≤ t ≤ T .

Proof We refer the readers to Lemma 4.2 in [9] for the proof. ��
Lemma 4 (Hk boundedness of the exact solution to the Allen-Cahn equation) Assume
u(x, t) is a smooth solution to the Allen-Cahn equation in T

d with d ≤ 3 and the
initial data u0 ∈ Hk(Td) for k ≥ 2. Then,

sup
t≥0

‖u(t)‖Hk (Td ) �k 1 (2.2)

where we omit the dependence on ν and u0.

Proof All cases d = 1, 2, 3 have been proved and we refer the readers to Lemma 4.4
in [9] for the proof. ��
Lemma 5 (Log-type interpolation) For all f ∈ Hs(T2) , s > 1, then

‖ f ‖∞ ≤ Cs ·
(
‖ f ‖Ḣ1

√
log(‖ f ‖Ḣ s + 3) + | f̂ (0)| + 1

)
.

Here Cs is a constant which only depends on s.

Proof The proof of Lemma 5 is given in [9]. For the sake of completenesswe sketch the
proof here. We first consider the Fourier series of f : f (x) = 1

(2π)2

∑
k∈Z2 f̂ (k) eik·x ,

which converge pointwisely to f . It then follows that

‖ f ‖∞ ≤ 1

(2π)2

∑
k∈Z2

| f̂ (k)|

≤ 1

(2π)2

⎛
⎝| f̂ (0)| +

∑
0<|k|≤N

| f̂ (k)| +
∑

|k|>N

| f̂ (k)|
⎞
⎠

� | f̂ (0)| +
∑

0<|k|≤N

(| f̂ (k)‖k| · |k|−1) +
∑

|k|>N

(| f̂ (k)‖k|s · |k|−s)

� | f̂ (0)| +
⎛
⎝ ∑

0<|k|≤N

| f̂ (k)|2|k|2
⎞
⎠

1
2

·
⎛
⎝ ∑

0<|k|≤N

|k|−2

⎞
⎠

1
2

+
⎛
⎝ ∑

|k|>N

| f̂ (k)|2|k|2s

⎞
⎠

1
2
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· (
∑

|k|>N

|k|−2s)
1
2

� | f̂ (0)| + 1

N s−1

⎛
⎝ ∑

|k|>N

| f̂ (k)|2|k|2s

⎞
⎠

1
2

+
⎛
⎝ ∑

0<|k|≤N

| f̂ (k)|2|k|2
⎞
⎠

1
2

· √log(N + 3)

� | f̂ (0)| + 1

N s−1 ‖ f ‖Ḣ s + √
log(N + 3)‖ f ‖Ḣ1 .

If ‖ f ‖Ḣ s ≤ 3, we can simply take N = 1; otherwise take N s−1 close to ‖ f ‖Ḣ s .
As a remark, this lemma can be viewed as a variation of the well-known log-type
Bernstein’s inequality. ��

3 Second order semi-implicit scheme I

Recall that the second order semi-implicit Fourier spectral scheme I is given by:

3un+1 − 4un + un−1

2τ
= ν�un+1 − Aτ(un+1 − un) − 	N

(
2 f (un) − f (un−1)

)
,

n ≥ 1 , (3.1)

where τ > 0 is the time step and this scheme applies second order backward derivative
in time with a second order extrapolation for the nonlinear term. Recall that we need
to derive u1 according to the following first order scheme:

⎧⎪⎨
⎪⎩

u1 − u0

τ1
= ν�u1 − 	N f (u0) ,

u0 = 	N u0 ,

(3.2)

where τ1 = min{τ 4
3 , 1}. The choice of τ1 is due to the error analysis which will be

shown later. Roughly speaking,

‖u1 − u(τ1)‖2 � N−s + τ
3
2
1 ,

where u(τ1) denotes the exact PDE solution at τ1. As expected in L2 error analysis of

the second order scheme, we require that τ
3
2
1 � τ 2 or τ1 � τ

4
3 .

3.1 Estimate of the first order scheme (1.4)

In this section we will estimate some bounds for u1 which will be used to prove the
stability and L2 error estimate of the second order scheme I.
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Lemma 6 Consider the scheme (1.4). Assume u0 ∈ H2(T2), then

‖u1‖∞ + ‖u1 − u0‖22
τ1

+ ν

2
‖∇u1‖22 �E(u0) , ‖u0‖H2 1 .

Proof Firstly, we consider ‖u1‖∞. We write

u1 = 1

1 − τ1ν�
u0 − τ1	N

1 − τ1ν�
f (u0) .

Note that

1

1 + τ1ν|k|2 ≤ 1 , τ1 ≤ 1 ,

thus we have

‖u1‖∞ � ‖u1‖H2 � ‖u0‖H2 + ‖ f (u0)‖H2

� ‖u0‖H2 + ‖(u0)3‖H2

�‖u0‖H2 1 ,

as ‖u0‖∞ � 1 byMorrey’s inequality. Secondly, we take L2 inner productwith u1−u0

on both sides of (1.4) and it then follows that

‖u1 − u0‖22
τ1

+ ν

2

(
‖∇u1‖22 − ‖∇u0‖22 + ‖∇(u1 − u0)‖22

)
= −( f (u0) , u1 − u0)

≤ ‖ f (u0)‖ 4
3
‖u1 − u0‖4

�E(u0) 1 ,

by ‖u0‖∞ , ‖u1‖∞ � 1. As a result, ‖u1‖∞ + ‖u1−u0‖22
τ1

+ ν
2‖∇u1‖22 �E(u0) , ‖u0‖H2

1. ��
Lemma 7 (Error estimate for u1) Consider the system for first time step u1:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1 − u0

τ1
= ν�u1 − 	N f (u0)

∂t u = ν�u − f (u)

u0 = 	N u0 , u(0) = u0 .

Let u0 ∈ Hs, s ≥ 6. There exists a constant D1 > 0 depending only on (u0, ν, s),

such that ‖u(τ1) − u1‖2 ≤ D1 · (N−s + τ
3
2
1 ).
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Proof We start the proof in three steps:
Step 1:We discretize the exact solution u in time. Write the continuous time PDE

in time interval [0, τ1]. Note that for a one-variable function h(s),

h(0) = h(τ1) +
∫ 0

τ1

h′(s) ds

= h(τ1) − h′(τ1)τ1 +
∫ τ1

0
h′′(s) · s ds .

By applying this formula, we have

u(τ1) − u(0)

τ1
= ∂t u(τ1) − 1

τ1

∫ τ1

0
(∂t t u) · s ds

= ν�u(τ1) − f (u(τ1)) − 1

τ1

∫ τ1

0
(∂t t u) · s ds

= ν�u(τ1) − 	N f (u(0)) − 	>N f (u(0)) − [ f (u(τ1) − f (u(0))]

− 1

τ1

∫ τ1

0
(∂t t u) · s ds ,

where 	>N = id − 	N . Therefore, we get

u(τ1) − u(0)

τ1
= ν�u(τ1) − 	N f (u(0)) + G0 ,

where

G0 = − 	>N f (u(0)) − [ f (u(τ1) − f (u(0))] − 1

τ1

∫ τ1

0
(∂t t u) · s ds

= − 	>N f (u(0)) − [ f (u(τ1) − f (u(0))] − 1

τ1

∫ τ1

0
(ν�∂t u − f ′(u)∂t u) · s ds

Step 2: Estimate ‖u(τ1) − u1‖2. We consider

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(τ1) − u(0)

τ1
= ν�u(τ1) − 	N f (u(0)) + G0

u1 − u0

τ1
= ν�u1 − 	N f (u0)

u0 = 	N u0 , u(0) = u0 .

Define e1 = u(τ1) − u1 and e0 = u(0) − u0. Then we get

e1 − e0

τ1
= ν�e1 − 	N

(
f (u(0)) − f (u0)

)
+ G0 .
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Taking the L2 inner product with e1 on both sides, we derive

1

2τ1

(
‖e1‖22 − ‖e0‖22 + ‖e1 − e0‖22

)
+ ν‖∇e1‖22

≤ ‖ f (u(0)) − f (u0)‖2 · ‖e1‖2 + ‖G0‖2 · ‖e1‖2
�

(
‖e0‖2 + ‖G0‖2

)
‖e1‖2

�
(
‖e0‖22 + ‖G0‖22

)
+ 1

4
‖e1‖22 .

As a result, we have

(
1 − τ1

2

)
‖e1‖22 ≤ 2τ1

(
‖e0‖22 + ‖G0‖22

)
+ ‖e0‖22 .

Note that τ1 ≤ 1, so 1 − τ1
2 ≥ 1

2 and

‖e1‖22 � (1 + τ1)‖e0‖22 + τ1‖G0‖22 .

Step 3: Estimate ‖e0‖22 and ‖G0‖22. Note that ‖e0‖22 = ‖u(0) − u0‖22 = ‖u0 −
	N u0‖22 = ‖	>N u0‖22. It is clear that

‖e0‖22 = ‖	>N u0‖22 � N−2s .

For ‖G0‖2, note that ‖	>N f (u(0))‖2 � N−s , by the maximum principle (Lemma
3). On the other hand, by the mean value theorem,

f (u(τ1)) − f (u(0)) = f ′(ξ)(u(τ1) − u(0)) ,

where ξ is a number betweenu(τ1) andu(0). Again by themaximumprinciple (Lemma
3),

‖ f (u(τ1)) − f (u(0))‖2 � ‖u(τ1) − u(0)‖2 � τ1‖∂t u‖L∞
t L2

x ([0 , τ1]×T2) � τ1 ,

by the Sobolev bound of the exact solution Lemma 4. Finally, we have

∥∥∥∥ 1

τ1

∫ τ1

0
(ν�∂t u − f ′(u)∂t u) · s ds

∥∥∥∥
2

�
∥∥∥∥
∫ τ1

0
ν�∂t u − f ′(u)∂t u ds

∥∥∥∥
2

�
∫ τ1

0
‖ν�∂t u‖2 ds +

∫ τ1

0
‖ f ′(u)∂t u‖2 ds

� τ1 .
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This implies ‖G0‖22 � N−2s + τ 21 . Therefore we get

‖e1‖22 � (1 + τ1)N−2s + τ1(N−2s + τ 21 ) � N−2s + τ 31 .

As a result, we obtain that

‖e1‖2 � N−s + τ
3
2
1 . (3.3)

This completes the proof. ��

3.2 Unconditional stability of the second order scheme I (1.3) & (1.4)

In this section we will prove Theorem 1 for the second order scheme (1.3) combining
(1.4). Before proving this stability theorem, we begin with several lemmas.

Lemma 8 Consider (1.3) for n ≥ 1. Suppose E(un) ≤ B and E(un−1) ≤ B for some
B > 0. Then

‖un+1‖∞ ≤ αB ·
{

(1 + ν−1) ·
√
log(3 + Aτ

ν
+ 1

τν
+ ν− 5

2 + ν−1) + τ + 1

}
,

for some αB > 0 only depending on B.

Proof For simplicity we write � instead of �B . Recall that (1.3)

3un+1 − 4un + un−1

2τ
= ν�un+1 − Aτ(un+1 − un) − 	N

(
2 f (un) − f (un−1)

)
.

We rewrite (1.3) as

un+1 = 4 + 2Aτ 2

3 − 2ντ� + 2Aτ 2
un − 1

3 − 2ντ� + 2Aτ 2

− 2τ	N

3 − 2ντ� + 2Aτ 2

(
2 f (un) − f (un−1)

)
.

For the case when k = 0, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4 + 2Aτ 2

3 + 2Aτ 2
� 1

1

3 + 2Aτ 2
� 1

2

3 + 2Aτ 2
� τ .

We thus have

|ûn+1(0)| � τ + 1 .
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Note that for the case when |k| ≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4 + 2Aτ 2

3 + 2ντ |k|2 + 2Aτ 2
� 1

1

3 + 2ντ |k|2 + 2Aτ 2
� 1

2τ |k|
3 + 2ντ |k|2 + 2Aτ 2

� τ |k|
ντ |k|2 � 1

ν
· |k|−1 .

Therefore we get

‖un+1‖Ḣ1 � ‖un‖Ḣ1 + ‖un−1‖Ḣ1 + 1

ν
‖〈∇〉−1

(
2 f (un) − f (un−1)

)
‖2

� ν− 1
2 + ν−1(‖(un)3‖4/3 + ‖(un−1)3‖4/3 + ‖un‖2 + ‖un−1‖2)

� ν− 1
2 + ν−1 ,

here we apply Sobolev’s inequality Lemma 1 and apply the energy bound. Similarly,
we can derive that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|k|2(4 + 2Aτ 2)

3 + 2ντ |k|2 + 2Aτ 2
� |k|2(1 + Aτ 2)

ντ |k|2 � 1

ντ
+ Aτ

ν

|k|2
3 + 2ντ |k|2 + 2Aτ 2

� 1

ντ

2τ |k|2
3 + 2ντ |k|2 + 2Aτ 2

� τ |k|2
ντ |k|2 � 1

ν
.

This implies

‖un+1‖Ḣ2 �
(

1

ντ
+ Aτ

ν

)
‖un‖2 + 1

ντ
‖un−1‖2 + 1

ν
‖2 f (un) − f (un−1)‖2

� 1

ντ
+ Aτ

ν
+ 1

ν

(
‖un‖36 + ‖un−1‖36 + ‖un‖2 + ‖un−1‖2

)
� 1

ντ
+ Aτ

ν
+ 1

ν

(
‖un‖3H1 + ‖un−1‖3H1 + 1

)
� 1

ντ
+ Aτ

ν
+ 1

ν
(ν− 3

2 + 1) .

Finally, by applying the log-interpolation lemma (Lemma 5), we can get

‖un+1‖∞ � (1 + ‖un+1‖Ḣ1) ·
√
log(3 + ‖un+1‖Ḣ2) + | ̂un+1(0)|

� (1 + ν−1) ·
√
log(3 + Aτ

ν
+ 1

ντ
+ ν− 5

2 + ν−1) + τ + 1 ,
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where ν− 1
2 is bounded by ν−1 + 1. ��

3.3 Proof of the unconditional stability

In this section we show Theorem 1. To start with we introduce some notation. We
denote δun+1 := un+1 − un and δ2un+1 := un+1 − 2un + un−1. Clearly,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
3un+1 − 4un + un−1 = 2δun+1 + δ2un+1

δ2un+1 − δun+1 = −δun

δun · un = (un − un−1)un = 1

2

(
|un|2 − |un−1|2 + |δun|2

)
.

As a result, we have

(
3un+1 − 4un + un−1 , un+1 − un

)
=

(
2δun+1 + δ2un+1 , δun+1

)
= 2‖δun+1‖22 +

(
δun+1 − δun , δun+1

)
= 2‖δun+1‖22 + 1

2

(
‖δun+1‖22 − ‖δun‖22 + ‖δ2un+1‖22

)
.

Now recall the scheme (1.3)

3un+1 − 4un + un−1

2τ
= ν�un+1 − Aτ(un+1 − un) − 	N

(
2 f (un) − f (un−1)

)
.

Taking the L2 inner product with δun+1 = un+1 − un on both sides of (1.3), we have

1

τ
‖δun+1‖22 + 1

4τ

(
‖δun+1‖22 − ‖δun‖22 + ‖δ2un+1‖22

)
+ν

2

(
‖∇un+1‖22 − ‖∇un‖22 + ‖δ∇un+1‖22

)
+Aτ‖δun+1‖22 = −

(
	N (2 f (un) − f (un−1)) , δun+1

)
.

To analyze
(
2 f (un) − f (un−1) , δun+1

)
, we consider

2 f (un) − f (un−1) = f (un) +
(

f (un) − f (un−1
)

.
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Note that F ′ = f , hence by the fundamental theorem of calculus,

F(un+1) − F(un)

= f (un)δun+1 +
∫ 1

0
f ′(un + sδun+1)(1 − s) ds · (δun+1)2

= f (un)δun+1 +
∫ 1

0
f̃ (un + sδun+1)(1 − s) ds · (δun+1)2 − 1

2
(δun+1)2 ,

where f̃ (x) = 3x2, as f ′(x) = 3x2 − 1. Therefore, we can get

f (un)δun+1 ≥ F(un+1) − F(un) + 1

2
(δun+1)2 − 3

2

(
‖un‖2∞ + ‖un+1‖2∞

)
· (δun+1)2 .

On the other hand by the mean value theorem,

f (un) − f (un−1) = f ′(ξ)δun ,

and hence we have

∫
T2

( f (un) − f (un−1)) · δun+1 ≥ −
(
3‖un‖2∞ + 3‖un−1‖2∞ + 1

)
· ‖δun‖2 · ‖δun+1‖2

≥ −
(
1 + 3‖un‖2∞ + 3‖un−1‖2∞

)2
ν

· ‖δun+1‖22 − ν

4
‖δun‖22 .

Then the estimate of the nonlinear term is as following:

−
(
	N (2 f (un) − f (un−1)) , δun+1

)
= −

(
2 f (un) − f (un−1) , δun+1

)
≤ −

∫
T2

F(un+1) dx +
∫
T2

F(un) dx − 1

2
‖δun+1‖22

+ 3

2

(
‖un‖2∞ + ‖un+1‖2∞

)
· ‖δun+1‖22

+
(
1 + 3‖un‖2∞ + 3‖un−1‖2∞

)2
ν

· ‖δun+1‖22 + ν

4
‖δun‖22 .
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Combining all estimates we get

1

τ
‖δun+1‖22 + 1

4τ

(
‖δun+1‖22 − ‖δun‖22 + ‖δ2un+1‖22

)
+ ν

2

(
‖∇un+1‖22 − ‖∇un‖22 + ‖δ∇un+1‖22

)
+ Aτ‖δun+1‖22

≤ −
∫
T2

F(un+1) dx +
∫
T2

F(un) dx − 1

2
‖δun+1‖22

+ 3

2

(
‖un‖2∞ + ‖un+1‖2∞

)
· ‖δun+1‖22

+
(
1 + 3‖un‖2∞ + 3‖un−1‖2∞

)2
ν

· ‖δun+1‖22 + ν

4
‖δun‖22 .

After simplification, we obtain

(
1

τ
+ Aτ − ν

4
+ 1

2

)
· ‖δun+1‖22 + Ẽ(un+1)

≤
{
3

2
(‖un‖2∞ + ‖un+1‖2∞) +

(
1 + 3‖un‖2∞ + 3‖un−1‖2∞

)2
ν

}
· ‖δun+1‖22 + Ẽ(un) .

Clearly for Ẽ(un+1) ≤ Ẽ(un), it suffices to show

1

τ
+ Aτ − ν

4
+ 1

2
≥

3

2
(‖un‖2∞ + ‖un+1‖2∞) +

(
1 + 3‖un‖2∞ + 3‖un−1‖2∞

)2
ν

.

(3.4)

Now we prove this sufficient condition inductively. Set

B = max
{

Ẽ(u1) , E(u0)
}

,

by Lemma 6 in previous section, B � 1. We shall prove for every m ≥ 2,

⎧⎪⎪⎨
⎪⎪⎩

Ẽ(um) ≤ B , Ẽ(um) ≤ Ẽ(um−1) ,

‖um‖∞ ≤ αB ·
[
(1 + ν−1) ·

√
log(3 + Aτ

ν
+ 1

τν
+ ν− 5

2 + ν−1) + τ + 1

]
,

where αB > 0 is the same constant in Lemma 8.
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We first check the base case when m = 2. Note that E(u1) ≤ Ẽ(u1) ≤ B and
E(u0) ≤ B, then we can apply Lemma 8, and hence obtain

‖u2‖∞ ≤ αB ·
{

(1 + ν−1) ·
√
log(3 + Aτ

ν
+ 1

τν
+ ν− 5

2 + ν−1) + τ + 1

}
.

It then suffices to check Ẽ(u2) ≤ Ẽ(u1). By the sufficient condition (3.4), we only
need to check the inequality

1

τ
+ Aτ − ν

4
+ 1

2
≥ 3

2
(‖u1‖2∞ + ‖u2‖2∞) +

(
1 + 3‖u1‖2∞ + 3‖u0‖2∞

)2
ν

.

By Lemma 6, ‖u0‖∞ , ‖u1‖∞ � 1, it suffices to choose A such that

1

τ
+ Aτ − ν

4
+ 1

2
≥ C · (1 + ν−2) · log(3 + Aτ

ν
+ 1

τν
+ ν− 5

2 + ν−1)

+ Cν−1 + C + Cτ .

We discuss two case and denote X = Aτ + 1
τ
.

Case 1: 0 < ν ≤ 1/2. In this case we need

X + 1

2
≥ Cν−2 · (| log ν| + | log X |) .

Hence we need

X ≥ C · ν−2| log ν| .

Case 2: ν > 1/2. Then we need

X ≥ C · (| log X | + 1 + ν) ,

namely,

X ≥ C · (1 + ν) .

In conclusion, as X ≥ 2
√

A,

A ≥ C · (1 + ν2 + ν−4| log ν|2) ≥ C · (ν2 + ν−4| log ν|2) .

Now we check the induction step. Assume the induction hypopaper hold for 2 ≤
m ≤ n, then for m = n + 1,
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‖un+1‖∞ ≤ αB ·
{

(1 + ν−1) ·
√
log(3 + Aτ

ν
+ 1

τν
+ ν− 5

2 + ν−1) + τ

}
,

by Lemma 8. It remains to show Ẽ(un+1) ≤ Ẽ(un). It suffices to choose A such that

1

τ
+ Aτ + 1

2
≥ν

4
+ C · (1 + ν−2) · log(3 + Aτ

ν
+ 1

τν
+ ν− 5

2 + ν−1)

+ C(1 + ν−4)

ν

(
(log(3 + Aτ

ν
+ 1

τν
+ ν− 5

2 + ν−1))2 + τ

)
.

In terms of X = Aτ + 1
τ
again, we need to discuss two cases as well.

Case 1: 0 < ν ≤ 1/2. Then

X ≥ C · ν−5(| log ν|2 + | log X |2) .

As a result, we have

X ≥ C · ν−5| log ν|2 .

Case 2: ν > 1/2. Then we need

X ≥ Cν + C · (log X + (log X)2ν−1) ,

hence X ≥ C · (ν + 1).
To conclude these two cases, we require that

A ≥ C · (ν2 + 1 + ν−10| log ν|4) ≥ C · (ν2 + ν−10| log ν|4) .

This completes the induction. Combining the estimate, we can take

A ≥ C · (ν2 + ν−10| log ν|4) , (3.5)

such that Ẽ(un+1) ≤ Ẽ(un), for n ≥ 1.

3.4 L2 error estimate of the second order scheme I

It remains to estimate the L2 error of this second order scheme. We will study the aux-
iliary error estimate behavior and time discretization behavior of Allen-Cahn equation
before proving the theorem.

3.4.1 Auxiliary L2 error estimate for near solutions

Consider for n ≥ 1,
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⎧⎪⎪⎨
⎪⎪⎩

3un+1 − 4un + un−1

2τ
= ν�un+1 − Aτ(un+1 − un) − 	N

(
2 f (un) − f (un−1)

)
+ Gn

3vn+1 − 4vn + vn−1

2τ
= ν�vn+1 − Aτ(vn+1 − vn) − 	N

(
2 f (vn) − f (vn−1)

)
,

(3.6)

where (u1, u0, v1, v0) are given.

Proposition For solutions to (3.6), assume for some N1 > 0,

sup
n≥0

‖un‖∞ + sup
n≥0

‖vn‖∞ ≤ N1 ,

Then for any m ≥ 2,

‖um − vm‖22 ≤ C · exp
(

(m − 1)τ · C(1 + N 4
1 )

η

)

·
(

(1 + Aτ 2)‖u1 − v1‖22 + ‖u0 − v0‖22 + τ

η

m−1∑
n=1

‖Gn‖22
)

,

where C > 0 is a absolute constant that can be computed and 0 < η < 1
100M is a

constant depending only on M, that is the upper bound for τ .

Proof We still denote the constant by C whose value may vary in different lines.
Denote en = un − vn , then

3en+1 − 4en + en−1

2τ
− ν�en+1 + Aτ(en+1 − en)

= −	N
(
2 f (un) − 2 f (vn)

) + 	N

(
f (un−1) − f (vn−1)

)
+ Gn

Taking the L2 inner product with en+1 on both sides, we derive that

1

2τ
(3en+1 − 4en + en−1, en+1) + ν‖∇en+1‖22
+ Aτ

2

(
‖en+1‖22 − ‖en‖22 + ‖en+1 − en‖22

)
= −2( f (un) − f (vn), en+1) + ( f (un−1) − f (vn−1), en+1) + (Gn, en+1) .

(3.7)

To estimate the right hand side of (3.7), first we observe that

|( f (un) − f (vn), en+1)| ≤ ‖ f (un) − f (vn)‖2‖en+1‖2 ≤ ‖ f (un) − f (vn)‖22
η

+ η‖en+1‖22,
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where η < 1
100M is a small number only depending on M . Moreover, note that

f (un) − f (vn) = f (un) − f (un − en)

= (un)3 − (un − en)3 − en

= −(en)3 − en − 3un(en)2 + 3(un)2en .

By assumption we then have

‖ f (un) − f (vn)‖22 �‖en‖4∞‖en‖22 + ‖en‖22 + ‖un‖2∞‖en‖22 + ‖un‖4∞‖en‖22
� (1 + N 4

1 )‖en‖22 .

Similarly, we have

‖ f (un−1) − f (vn−1)‖22 � (1 + N 4
1 )‖en−1‖22 .

As a result, we obtain that

RHS of (3.7) ≤ C(1 + N 4
1 )

η

(
‖en‖22 + ‖en−1‖22

)
+ 1

η
‖Gn‖22 + η‖en+1‖22 .

On the other hand, we have

(3en+1 − 4en + en−1, en+1 − en) = (2δen+1 + δ2en+1, δen+1)

= 2‖δen+1‖22 + 1

2

(
‖δen+1‖22 − ‖δen‖22 + ‖δ2en+1‖22

)
.

We also have that

(3en+1 − 4en + en−1, en) = 3(δen+1, en) − (δen, en)

= 3

2

(
‖en+1‖22 − ‖en‖22 − ‖en+1 − en‖22

)
− 1

2

(
‖en‖22 − ‖en−1‖22 + ‖en − en−1‖22

)
.

These two equations give that

(3en+1 − 4en + en−1, en+1)

= 3

2
(‖en+1‖22 − ‖en‖22) − 1

2
(‖en‖22 − ‖en−1‖22) + ‖δen+1‖22 − ‖δen‖22

+ 1

2
‖δ2en+1‖22 .
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Collecting all estimates, we bound (3.7) as

1

2τ

(
3

2
‖en+1‖22 − 1

2
‖en‖22 + ‖en+1 − en‖22

)
+ Aτ

2
‖en+1‖22

≤ 1

2τ

(
3

2
‖en‖22 − 1

2
‖en−1‖22 + ‖en − en−1‖22

)
+ Aτ

2
‖en‖22

+ C(1 + N 4
1 )

η

(
‖en‖22 + ‖en−1‖22

)
+ 1

η
‖Gn‖22 + η‖en+1‖22 . (3.8)

Define Xn+1 := 3
2‖en+1‖22 − 1

2‖en‖22 + ‖en+1 − en‖22. We observe that

Xn+1 =

⎧⎪⎨
⎪⎩

1

2
‖en+1‖22 + 1

2
‖2en+1 − en‖22

1

10
‖en‖22 + 5

2
‖en+1 − 2

5
en‖22 .

This shows

Xn+1 ≥ 1

10
max

{
‖en+1‖22, ‖en‖22

}
.

Making use of Xn+1, (3.8) becomes

(
Xn+1 + Aτ 2‖en+1‖22

) − (
Xn + Aτ 2‖en‖22

)
2τ

≤ C(1 + N 4
1 )

η

(
‖en‖22 + ‖en−1‖22

)
+ 1

η
‖Gn‖22 + η‖en+1‖22 .

This leads to(
Xn+1 − 2ητ‖en+1‖22 + Aτ 2‖en+1‖22

) − (
Xn − 2ητ‖en‖22 + Aτ 2‖en‖22

)
2τ

≤ C(1 + N 4
1 )

η

(
‖en‖22 + ‖en−1‖22

)
+ 1

η
‖Gn‖22 + η‖en‖22

≤
(

C(1 + N 4
1 )

η
+ Cη

)
·
(

Xn − 2ητ‖en‖22
)

+ 1

η
‖Gn‖22 .

Define that

yn = Xn − 2ητ‖en‖22 + Aτ 2‖en‖22 ,

α = C(1 + N 4
1 )

η
+ Cη ,

βn = ‖Gn‖22
η

.
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Then for ν small, we get

yn+1 − yn

τ
≤ αyn + βn .

Applying the discrete Gronwall’s inequality (Lemma 2), we have for m ≥ 2,

‖em‖22 ≤ C
(

Xm − 2ητ‖em‖22
)

≤ Ce(m−1)τ · C(1+N4
1 )

η(
X1 + Aτ 2‖e1‖22 + τ

η

m−1∑
n=1

‖Gn‖22
)

,

which gives

‖um − vm‖22
≤ C · exp

(
(m − 1)τ · C(1 + N 4

1 )

η

)
·
(
3

2
‖e1‖22 − 1

2
‖e0‖22 + ‖e1 − e0‖22

+Aτ 2‖e1‖22 + τ

η

m−1∑
n=1

‖Gn‖22
)

≤ C · exp
(

(m − 1)τ · C(1 + N 4
1 )

η

)
·
(
(1 + Aτ 2)‖u1 − v1‖22 + ‖u0 − v0‖22

+τ

η

m−1∑
n=1

‖Gn‖22
)

.

��

3.4.2 Time discretization of the Allen-Cahn equation

We first rewrite the AC equation in terms of the second order scheme.

Lemma 9 (Time discrete Allen-Cahn equation) Let u(t) be the exact solution to Allen-
Cahn equation with initial data u0 ∈ Hs(T2), s ≥ 8. Define t0 = 0, t1 = τ1 and
tm = τ1 + (m − 1)τ for m ≥ 2. Then for any n ≥ 1,

3u(tn+1) − 4u(tn) + u(tn−1)

2τ
= ν�u(tn+1) − Aτ (u(tn+1) − u(tn)) − 	N

[
2 f (u(tn)) − f (u(tn−1))

] + Gn .

For any m ≥ 2,

τ

m−1∑
n=1

‖Gn‖22 � (1 + tm) · (τ 4 + N−2s) .
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Proof The proof will be proceeded in several steps and we write� instead of�A, ν, u0
for simplicity.

Step 1: We write the PDE in the discrete form in time. Recall that

∂t u = ν�u − f (u) .

For a one variable function h(t), the following equation holds:

h(t) = h(t0) + h′(t0)(t − t0) + 1

2
h′′(t0)(t − t0)

2 + 1

2

∫ t

t0
h′′′(s)(s − t)2 ds .

We then apply this to AC,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(tn) = u(tn+1) − ∂t u(tn+1) · τ + 1

2
∂t t u(tn+1)τ

2 + 1

2

∫ tn

tn+1

∂t t t u(s)(s − tn)2 ds

u(tn−1) = u(tn+1) − ∂t u(tn+1) · 2τ + 2∂t t u(tn+1)τ
2 + 1

2

∫ tn−1

tn+1

∂t t t u(s)(s − tn−1)
2 ds.

The second equation minus 4 times the first equation results in

3u(tn+1) − 4u(tn) + u(tn−1)

2τ

= 1

2τ

(
2τ · ∂t u(tn+1) − 2

∫ tn

tn+1

∂t t t u(s)(s − tn)
2 ds

+ 1

2

∫ tn−1

tn+1

∂t t t u(s)(s − tn−1)
2 ds

)

= ∂t u(tn+1) + 1

τ

∫ tn+1

tn
∂t t t u(s)(s − tn)2 ds − 1

4τ

∫ tn+1

tn−1

∂t t t u(s)(s − tn−1)
2 ds

= ν�u(tn+1) − Aτ (u(tn+1) − u(tn)) − 	N
[
2 f (u(tn)) − f (u(tn−1))

]
+ Aτ (u(tn+1) − u(tn)) − 	>N

[
2 f (u(tn)) − f (u(tn−1))

]
+ 2 f (u(tn)) − f (u(tn−1)) − f (u(tn+1)

+ 1

τ

∫ tn+1

tn
∂t t t u(s)(s − tn)2 ds − 1

4τ

∫ tn+1

tn−1

∂t t t u(s)(s − tn−1)
2 ds .

Clearly we arrive at

Gn =Aτ (u(tn+1) − u(tn)) − 	>N
[
2 f (u(tn)) − f (u(tn−1))

]
+ 2 f (u(tn)) − f (u(tn−1)) − f (u(tn+1)

+ 1

τ

∫ tn+1

tn
∂t t t u(s)(s − tn)2 ds − 1

4τ

∫ tn+1

tn−1

∂t t t u(s)(s − tn−1)
2 ds

:=I1 + I2 + I3 + I4 + I5.
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Step 2: We hereby estimate ‖I1‖2 ∼ ‖I5‖2.
I1: Apply the fundamental theorem of calculus,

‖I1‖22 =‖Aτ (u(tn+1) − u(tn)) ‖22
�τ 2‖u(tn+1) − u(tn)‖22
�τ 2‖

∫ tn+1

tn
∂t u(s) ds‖22

�τ 2
∫
T2

(∫ tn+1

tn
∂t u(s) ds

)2

�τ 2
∫
T2

(
(

∫ tn+1

tn
|∂t u(s)|2 ds)1/2 · √

τ

)2

�τ 2 · τ ·
∫ tn+1

tn
‖∂t u(s)‖22 ds

�τ 3
∫ tn+1

tn
‖∂t u(s)‖22 ds .

I2: By the maximum principle Lemma 3 and u ∈ L∞
t Hs

x ,

‖I2‖2 �N−s · (‖ f (u(tn))‖Hs + ‖ f (u(tn−1))‖Hs )

�N−s .

I3: To bound ‖I3‖2, we recall that for a one-variable function h(t),

h(t) = h(t0) + h′(t0)(t − t0) −
∫ t

t0
h′′(s) · (s − t) ds .

Then we apply to f (u(tn)),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (u(tn)) = f (u(tn+1)) − ∂t ( f (u))(tn+1) · τ +
∫ tn+1

tn
∂t t ( f (u)) · (s − tn) ds

f (u(tn−1)) = f (u(tn+1)) − ∂t ( f (u))(tn+1) · 2τ
+

∫ tn+1

tn−1

∂t t ( f (u)) · (s − tn−1) ds .

Then we subtract the second equation above by 2 times the first equation and derive:

f (u(tn+1)) − 2 f (u(tn)) + f (u(tn−1))

= −2
∫ tn+1

tn
∂t t ( f (u)) · (s − tn) ds +

∫ tn+1

tn−1

∂t t ( f (u)) · (s − tn−1) ds .
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As a result, we get

‖I3‖22 = ‖ f (u(tn+1)) − 2 f (u(tn)) + f (u(tn−1))‖22
� ‖

∫ tn+1

tn
∂t t ( f (u)) · (s − tn) ds‖22 + ‖

∫ tn+1

tn−1

∂t t ( f (u)) · (s − tn−1) ds‖22

� τ 2 · ‖
∫ tn+1

tn
∂t t ( f (u)) ds‖22 + τ 2 · ‖

∫ tn+1

tn−1

∂t t ( f (u)) ds‖22

� τ 3
∫ tn+1

tn−1

‖∂t t ( f (u))‖22 ds ,

by a similar estimate in I1.
I4&I5:

‖I4‖22 + ‖I5‖22
�

∥∥∥∥1τ
∫ tn+1

tn
∂t t t u(s)(s − tn)

2 ds

∥∥∥∥
2

2

+
∥∥∥∥1τ

∫ tn+1

tn−1

∂t t t u(s)(s − tn−1)
2 ds

∥∥∥∥
2

2

�
∥∥∥∥1τ

∫ tn+1

tn−1

∂t t t u(s) · τ 2 ds

∥∥∥∥
2

2

� τ 2 ·
∥∥∥∥
∫ tn+1

tn−1

∂t t t u(s) ds

∥∥∥∥
2

2

� τ 3
∫ tn+1

tn−1

‖∂t t t u(s)‖22 ds .

Step 3: Estimate τ · ∑m−1
n=1 ‖Gn‖22.

Collecting estimates above, we have

τ ·
m−1∑
n=1

‖Gn‖22 = τ ·
m−1∑
n=1

(‖I1‖22 + ‖I2‖22 + ‖I3‖22 + ‖I4‖22 + ‖I5‖22)

� mτ · N−2s + τ 4 ·
∫ tm

0
‖∂t u‖22 + ‖∂t t ( f (u))‖22 + ‖∂t t t u‖22 ds̃ .

Note that by differentiating the original AC equation, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t t u = ν∂t�u − ∂t ( f (u))

∂t t t u = ν∂t t�u − ∂t t ( f (u))

∂t ( f (u)) = f ′(u)∂t u

∂t t ( f (u)) = f ′(u)∂t t u + f ′′(u)(∂t u)2 ,
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hence together with maximum principle and higher Sobolev bounds Lemma 4 one
has

τ ·
m−1∑
n=1

‖Gn‖22 � mτ · N−2s + τ 4 ·
∫ tm

0
‖∂t u‖22 + ‖∂t t ( f (u))‖22 + ‖∂t t t u‖22 ds̃

� tm · N−2s + τ 4 ·
∫ tm

0
‖u‖2Hs ds̃

� tm · N−2s + τ 4 · (1 + tm)

� (1 + tm) · (τ 4 + N−2s) .

This completes the proof of Lemma 9. ��

3.4.3 Proof of L2 error estimate of second order scheme I (1.3)

Note that the assumptions in Proposition 3.4.1 are satisfied by the unconditional The-
orem 1 and the maximum principle of the Allen-Cahn equation. Thus we apply the
auxiliary estimate Proposition 3.4.1. Then

‖u(tm) − um‖22 � eCmτ ·
(

(1 + Aτ 2)‖u1 − v1‖22 + ‖u0 − v0‖22 + τ

m−1∑
n=1

‖Gn‖22
)

.

By Lemma 7 and Lemma 9,

‖u(tm) − um‖22 � eCmτ ·
⎛
⎝(1 + Aτ2)‖u1 − v1‖22 + ‖u0 − v0‖22 + τ

m−1∑
n=1

‖Gn‖22

⎞
⎠

� eCtm ·
(
(1 + Aτ2)(N−2s + τ4) + N−2s + (1 + tm) · (τ4 + N−2s)

)
� eCtm · (N−2s + τ4) .

Thus for m ≥ 2,

‖u(tm) − um‖2 � eCtm · (N−s + τ 2) .

Remark 4 For the error estimate, we actually do not need high regularity of the initial
data because of a smoothing effect of Allen-Cahn equation.
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4 Second order semi-implicit scheme II

In this section, we recall the second order scheme II:

3un+1 − 4un + un−1

2τ
= ν�un+1 − A(un+1 − 2un + un−1)

− 	N

(
2 f (un) − f (un−1)

)
,

(4.1)

where τ > 0 is the time step and n ≥ 1. We again need to derive u1 according to the
following first order scheme:

⎧⎪⎨
⎪⎩

u1 − u0

τ1
= ν�u1 − 	N f (u0) ,

u0 = 	N u0 ,

(4.2)

where τ1 = min{τ 4
3 , 1 , 1√

A+1
}. The choice of such τ is to guarantee the error estimate

as mentioned in Sect. 3.4, and to ensure that the new modified energy function can be
controlled by the initial data.

4.1 Estimate of the first order scheme (1.6)

In this section we will still estimate some bounds of u1 which will be used to prove
the stability of the second order scheme and it will be slightly different from scheme
(1.4).

Lemma 10 Consider the scheme (1.6).⎧⎪⎨
⎪⎩

u1 − u0

τ1
= ν�u1 − 	N f (u0) ,

u0 = 	N u0 ,

where τ1 = min{τ 4
3 , 1 , 1√

A+1
}. Assume u0 ∈ H2(T2), then

⎧⎪⎨
⎪⎩

E(u1) + ‖u1 − u0‖22
τ1

�E(u0),‖u0‖H2 1

(1 + A)‖u1 − u0‖22 �‖u0‖H2 (1 + ν)2 .

Proof The first inequality shares the same proof as in previous section since the scheme
(1.6) is a refined version of (1.4).

For the second inequality, recall that ‖u1‖H2 �‖u0‖H2 . We get

1

τ1
‖u1 − u0‖2 ≤ ν‖u1‖H2 + ‖ f (u0)‖2 �‖u0‖H2 1 + ν .
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This implies

(A + 1)‖u1 − u0‖22 �‖u0‖H2 (1 + ν)2 .

��

4.2 Conditional stability of the second order scheme II (1.5) & (1.6)

In this section we will prove Theorem 3 for the second order scheme (1.5) & (1.6).
Before proving this stability theorem, we begin with several lemmas.

Lemma 11 Consider (1.5) for n ≥ 1. Suppose E(un) ≤ B · (1 + ν)2 and E(un−1) ≤
B · (1 + ν)2 for some B > 0. Then

‖un+1‖∞ ≤ αB ·
{
(ν

1
2 + ν−1) · √1 + log(A + 1) + | log ν| + | log τ | + 1

}
,

for some αB > 0 only depending on B.

Proof For simplicity we write � instead of �B . Note that by the energy estimates,

‖∇un−1‖2 + ‖∇un‖2 � ν− 1
2 (1 + ν) , ‖un−1‖4 + ‖un‖4 � (1 + ν)

1
2 .

We rewrite the scheme (1.5) as

un+1 = 4 + 4Aτ

3 + 2Aτ − 2ντ�
un − 1 + 2Aτ

3 + 2Aτ − 2ντ�
un−1

− 2τ	N

3 + 2Aτ − 2ντ�

(
2 f (un) − f (un−1)

)
.

For Fourier mode k = 0, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4 + 4Aτ

3 + 2Aτ
� 1

1 + 2Aτ

3 + 2Aτ
� 1

2τ

3 + 2Aτ
� 1

A
� 1 .

Thus

|ûn+1(0)| � 1 .
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For |k| ≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4 + 4Aτ

3 + 2Aτ + 2ντ |k|2 � 1

1 + 2Aτ

3 + 2Aτ + 2ντ |k|2 � 1

2τ

3 + 2Aτ + 2ντ |k|2 � 1

ν|k|2 .

This implies

‖un+1‖Ḣ1 �‖un‖Ḣ1 + ‖un−1‖Ḣ1 + 1

ν
‖〈∇〉−1(2 f (un) − f (un−1))‖2

�ν− 1
2 (1 + ν) + ν−1 ·

(
‖(un)3‖4/3 + ‖(un−1)3‖4/3 + ‖un‖2 + ‖un−1‖2

)
�ν− 1

2 (1 + ν) + ν−1 ·
(
(1 + ν)

3
2 + (1 + ν)

1
2

)
�ν−1 + ν

1
2 .

Similarly, we can derive that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4 + 4Aτ

3 + 2Aτ + 2ντ |k|2 �
(

1

ντ
+ A

ν

)
· 1

|k|2
1 + 2Aτ

3 + 2Aτ + 2ντ |k|2 �
(

1

ντ
+ A

ν

)
· 1

|k|2
2τ

3 + 2Aτ + 2ντ |k|2 � 1

ν|k|2 .

Thus by the standard Sobolev inequality

‖un+1‖Ḣ2 �
(

1

ντ
+ A

ν

)
·
(
‖un‖2 + ‖un−1‖2

)
+ 1

ν
‖(2 f (un) − f (un−1))‖2

�
(

1

ντ
+ A

ν

)
· (1 + ν)

1
2 + ν−1

(
‖un‖36 + ‖un−1‖36 + ‖un‖2 + ‖un−1‖2

)

�
(

1

ντ
+ A

ν

)
· (1 + ν)

1
2 + ν−1(ν− 3

2 (1 + ν)3 + (1 + ν)
1
2 )

� 1

ντ
+ A

ν
+ 1

ν
1
2 τ

+ A + 1

ν
1
2

+ ν− 5
2 + ν

1
2 .

As a result, by the log interpolation Lemma 5 again, we get

‖un+1‖∞ � (ν
1
2 + ν−1) · √1 + log(A + 1) + | log ν| + | log τ | + 1.

��
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4.3 Proof of the conditional stability

To prove Theorem 3, we first recall that

3un+1 − 4un + un−1

2τ
− ν�un+1 + A(un+1 − 2un + un−1)

= −	N

(
2 f (un) − f (un−1)

)
.

(4.3)

We apply the L2 inner product with δun+1 = un+1 − un on both sides of (4.3). Recall
that

(
3un+1 − 4un + un−1 , un+1 − un

)
= 2‖δun+1‖22 + 1

2

(
‖δun+1‖22 − ‖δun‖22 + ‖δ2un+1‖22

)
.

Applying this equation, we derive the estimate of the left hand side of (4.3) after taking
inner products:

LHS =1

τ
‖δun+1‖22 + 1

4τ

(
‖δun+1‖22 − ‖δun‖22 + ‖δ2un+1‖22

)
+ ν

2

(
‖∇un+1‖22 − ‖∇un‖22 + ‖δ∇un+1‖22

)
+ A

2

(
‖δun+1‖22 − ‖δun‖22 + ‖δ2un+1‖22

)
≥

[
ν

2
‖∇un+1‖22 + 1

4τ
‖δun+1‖22 + A

2
‖δun+1‖22

]

−
[
ν

2
‖∇un‖22 + 1

4τ
‖δun‖22 + A

2
‖δun‖22

]

+ 1

τ
‖δun+1‖22 + A

2
‖δ2un+1‖22 .

Now it remains to estimate the right hand side of (4.3) after taking inner products:

RHS = −
(
2 f (un) − f (un−1) , δun+1

)
=

(
2un − un−1 , δun+1

)
+

(
(un−1)3 − 2(un)3 , δun+1

)
:= I1 + I2 .
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To estimate I1:

I1 =
(
−δ2un+1 , δun+1

)
+

(
un+1 , δun+1

)
= − 1

2

(
‖δun+1‖22 − ‖δun‖22 + ‖δ2un+1‖22

)
+ 1

2

(
‖un+1‖22 − ‖un‖22 + ‖δun+1‖22

)
.

For I2, we use the identity un−1 = δ2un+1 + 2un − un+1, then

(un−1)3 − 2(un)3 =(δ2un+1 + 2un − un+1)3 − 2(un)3

=(δ2un+1)3 + 3(δ2un+1)2(2un − un+1) + 3δ2un+1(2un − un+1)2

+ (2un − un+1)3 − 2(un)3 .

Note that

3δ2un+1(2un − un+1)2 = 3δ2un+1(δ2un+1 − un−1)2

= 3(δ2un+1)3 − 6(δ2un+1)2un−1 + 3δ2un+1(un−1)2 .

As a result, we get

(un−1)3 − 2(un)3

= 4(δ2un+1)3 + (δ2un+1)2(6un − 3un+1 − 6un−1)

+ 3δ2un+1(un−1)2 + (2un − un+1)3 − 2(un)3

= (δ2un+1)2 ·
[
4(un+1 − 2un + un−1) + 6un − 3un+1 − 6un−1

]
+ 3δ2un+1(un−1)2 + 6(un)3 − 12(un)2un+1 + 6un(un+1)2 − (un+1)3

= (δ2un+1)2 · (un+1 − 2un − 2un−1) + 3δ2un+1(un−1)2

+ 6un(un+1 − un)2 − (un+1)3 .

Therefore,

|I2| ≤ ‖δ2un+1‖∞ · ‖δ2un+1‖2 · ‖δun+1‖2
·
(
‖un+1‖∞ + 2‖un‖∞ + 2‖un−1‖∞

)
+ ‖δ2un+1‖2 · ‖δun+1‖2 · 3‖un−1‖2∞
+

(
(δun+1)2 , 6un(un+1 − un)

)
−

(
(un+1)3 , δun+1

)
.

Now note that

(un)4

4
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= 1

4
(un+1 − δun+1)4

= 1

4

[
(un+1)4 − 4(un+1)3δun+1 + 6(un+1)2(δun+1)2 − 4un+1(δun+1)3 + (δun+1)4

]

= (un+1)4

4
− (un+1)3δun+1 + 1

4
(δun+1)2

[
6(un+1)2 − 4un+1(un+1 − un) + (un+1 − un)2

]

= (un+1)4

4
− (un+1)3δun+1 + (δun+1)2

4

[
(un)2 + 2unun+1 + 3(un+1)2

]
.

Applying this identity we have

(
(δun+1)2 , 6un(un+1 − un)

)
−

(
(un+1)3 , δun+1

)
=

∫
T2

(un)4

4
−

∫
T2

(un+1)4

4
−

(
(δun+1)2 ,

25

4
(un)2 − 11

2
unun+1 + 3

4
(un+1)2

)

=
∫
T2

(un)4

4
−

∫
T2

(un+1)4

4
−

(
(δun+1)2 ,

25

4
(un − 11

25
un+1)2

)

+ 23

50

(
(δun+1)2 , (un+1)2

)
.

Observe that

‖δ2un+1‖∞ ≤ 4max
{
‖un−1‖∞, ‖un‖∞, ‖un+1‖∞

}
,

RHS

≤ − 1

4
‖un+1‖44 + 1

2
‖un+1‖22 − 1

2
‖δun+1‖22

+ 1

4
‖un‖44 − 1

2
‖un‖22 + 1

2
‖δun‖22

− 1

2
‖δ2un+1‖22 + ‖δun+1‖22 ·

(
1

2
+ 23

50
‖un+1‖2∞

)

+ ‖δ2un+1‖2 · ‖δun+1‖2 · 23max
{
‖un−1‖2∞, ‖un‖2∞, ‖un+1‖2∞

}
.

Recall that

E(u) = ν

2
‖∇u‖22 + 1

4
‖u‖44 − 1

2
‖u‖22 + 1

4
· μ(T2) ,

where μ(T2) is the measure of T
2. Hence by comparing the LHS and RHS, we get

E(un+1) + 1

4τ
‖δun+1‖22 + A + 1

2
‖δun+1‖22

≤ E(un) + 1

4τ
‖δun‖22 + A + 1

2
‖δun‖22

+ ‖δ2un+1‖2 · ‖δun+1‖2 · 23max
{
‖un−1‖2∞, ‖un‖2∞, ‖un+1‖2∞

}
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Table 1 Choice of centers and
radii xi −π

2 − 3π
4 −π

2 0 π
2 0 π

2

yi −π
2 −π

4
π
4 − 3π

4 − 3π
4 0 π

2

ri
π
5

2π
15

2π
15

π
10

π
10

π
4

π
4

−
{

A + 1

2
‖δ2un+1‖22 +

(
1

τ
− 1

2
− 23

50
‖un+1‖2∞

)
· ‖δun+1‖22

}
.

To show the desired energy decay, it suffices to require

2(A + 1)

(
1

τ
− 1

2
− 23

50
‖un+1‖2∞

)

≥ 529max
{
‖un−1‖4∞, ‖un‖4∞, ‖un+1‖4∞

}
.

(4.4)

We will prove it inductively as in the previous section. Set

B = max
{

E̊(u1) , E(u0)
}

,

by Lemma 10 in the previous section, B � 1. We shall prove for every m ≥ 2,

⎧⎨
⎩

E̊(um) ≤ B · (1 + ν)2 , E̊(um) ≤ E̊(um−1) ,

‖um‖∞ ≤ αB ·
[
(ν

1
2 + ν−1) · √1 + log(A + 1) + | log ν| + | log τ | + 1

]
,

where αB > 0 is the same constant in Lemma 11. Then it suffices to verify the main
inequality (4.4):

2(A + 1)

(
1

τ
− 1

2
− C1 − C1 · (ν−2 + ν) · (1 + log(A + 1) + | log ν| + | log τ |)

)

> C2(ν
−4 + ν2) ·

(
1 + | log(A + 1)|2 + | log ν|2 + | log τ |2

)
+ C2 .

We consider two cases.
Case 1: A = 0. Then we need

1

τ
 (ν−4 + ν2) ·

(
1 + | log(A + 1)|2 + | log ν|2 + | log τ |2

)
+ 1 .

If 0 < ν < 1, we require that

τ � ν4

1 + | log ν|2 ;
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Fig. 1 Dynamics of 2D Allen-Cahn equation using semi-implicit scheme I where ν = 0.1, A=1, u0 =
sin(x) sin(y), τ = 0.01, Nx = Ny = 256.

If ν ≥ 1, we then require that

τ � ν−2

1 + | log ν|2 .
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Fig. 2 Dynamics of 2D Allen-Cahn equation using semi-implicit scheme I where ν = 0.01, A=1, τ =
0.01, Nx = Ny = 256 and the initial data u0 is given in (5.1).

Case 2: A = const · (ν2 + ν−4). In this case,

1

τ
 (ν−2 + ν) · (1 + | log(A + 1)| + | log ν| + | log τ |) + | log ν|2 + | log τ |2 + 1 .
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Fig. 3 Dynamics of 2D Allen-Cahn equation using semi-implicit scheme II where ν = 0.1, A=1, u0 =
sin(x) sin(y), τ = 0.01, Nx = Ny = 256.

If 0 < ν < 1, we need

τ � ν2

1 + | log ν| ;
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Fig. 4 Dynamics of 2D Allen-Cahn equation using semi-implicit scheme II where ν = 0.01, A=1, τ =
0.01, Nx = Ny = 256 and the initial data u0 is given in (5.1).

If ν ≥ 1, then we need

τ � ν−1

1 + | log ν| .

This completes the proof.
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5 Numerical evidence

5.1 Several benchmark computation results with different initial data

Several numerical results are given below. For the Scheme I, we perform the following
numerical simulation. In Figure 1, we choose ν = 0.1, A=1, u0 = sin(x) sin(y),
τ = 0.01, Nx = Ny = 256.

The next numerical simulation is shown in Figure 2. In this simulation we choose
ν = 0.01, A=1, τ = 0.01, Nx = Ny = 256 and the initial data u0 is given basically
supported in several circles as below:

u0(x, y) = −1 +
7∑

i=1

f0

(√
(x − xi )2 + (y − yi )2 − ri

)
, (5.1)

where

f0(s) =
{

2e
− ν

s2 , if s < 0;
0, otherwise.

The centers and radii of the chosen circles are given in the table 1 below.
For Scheme II, an numerical result is given in Figure 3 where we choose ν = 0.1,

A=1, u0 = sin(x) sin(y), τ = 0.01, Nx = Ny = 256.
We also provide a similar simulation using the same u0 in (5.1) as a comparison

to Scheme I. The numerical simulation can be seen below in Figure 4 where we also
choose ν = 0.01, A=1, τ = 0.01, Nx = Ny = 256.

5.2 Convergence test

In this subsection we consider a benchmark computation test with initial data being
u0 = 0.5 ∗ sin(x) sin(y). We take ν = 1, A = 0.1 and Nx = Ny = 256. Then
we consider the exact solution ue = 0.5 ∗ e−t sin(x) sin(y) corresponding to certain
forcing term that can be computed explicitly. With these settings we perform our
numerical experiments for both schemes with various time steps τ = 0.01

2k with k =
0, 1, ..., 6. The relative L2-errors and L∞-errors at time T = 0.5 are presented below
in Table 2 and Table 3. As usual, the experimental order of convergence is computed by
comparing the errors of two consecutive refinements. Indeed the rate of convergence
indicates the order of the error is O(τ 2).

6 Concluding remark

Throughout this paper, we discussed two second order semi-implicit Fourier spectral
methods on the Allen-Cahn equation in the two dimensional torus. We proved the
stability (energydecay) of the schemesby adding stabilizing termswith a large constant
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Table 2 Errors and orders of
convergence with the scheme I

τ = 0.01 L2-error Rate L∞-error Rate

τ 3.316E-06 - 4.086E-05 -

τ/2 8.327E-07 1.995 1.026E-05 1.996

τ/4 2.087E-07 1.998 2.571E-06 1.998

τ/8 5.224E-08 1.999 6.435E-07 1.999

τ/16 1.307E-08 1.999 1.610E-07 1.999

τ/32 3.268E-09 2.000 4.025E-08 2.000

Table 3 Errors and orders of
convergence with the scheme II

τ = 0.01 L2-error Rate L∞-error Rate

τ 3.093E-06 - 3.809E-05 -

τ/2 7.763E-07 1.996 9.560E-06 1.996

τ/4 1.945E-07 1.998 2.395E-06 1.998

τ/8 4.868E-08 1.999 5.993E-07 1.999

τ/16 1.218E-08 1.999 1.499E-07 1.999

τ/32 3.045E-09 2.000 3.749E-08 2.000

A. We also proved the L2 error estimate between numerical solutions from the semi-
implicit scheme and the exact solutions. Future work can be done in other gradient
cases such as general non-local Cahn-Hilliard equations, MBE equations, and other
equations describing interesting phenomena in material sciences.
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