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Abstract. The oxygen depletion problem is an implicit moving boundary value problem. The
dynamics allow topological changes in the moving boundary. We show several mathematical formu-
lations of this model from the literature and give a new formulation based on a gradient flow with
constraint. All formulations are shown to be equivalent. We explore the possibilities for the numeri-
cal approximation of the problem that arise from the different formulations. We show a convergence
result for an approximation based on the gradient flow with constraint formulation that applies to
the general dynamics including topological changes. More general (vector, higher order) implicit
moving boundary value problems are discussed. Several open problems are described.

Key words. oxygen depletion, implicit moving boundary, gradient flow, variational inequality,
capturing method
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1. Introduction. The oxygen depletion (OD) problem is a moving boundary
value problem of implicit type. Implicit here means that the moving boundary is
specified implicitly by an extra boundary condition rather than explicitly as an inter-
face normal velocity as for a Stefan problem [26, 30, 22].

The OD problem was introduced as a model of oxygen consumption and diffusion
in living tissue but several other problems have a similar structure. Some of the early
work is described in [6] with a great deal of subsequent interest from the analysis and
numerical research communities in [26, 24, 8, 2, 20]. Reference [20] has a review of
much of the previous work. In the current work, we pursue an understanding of the
analysis of the OD problem as the simplest example of an implicit moving boundary
value problem. We are motivated by an interest in the analysis and computation of a
general class of implicit moving boundary value problems.

By way of introduction, we present the OD problem in one dimension for an
unknown u(x, t) for x \in [0, s(t)] with a single moving boundary x = s(t) and a no-flux
condition ux = 0 at x = 0. At the moving boundary, u = 0 and additionally ux = 0.
These two conditions implicitly define the moving boundary x = s(t). The solution
obeys
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 53

ut = uxx  - 1(1.1)

for x \in [0, s(t)] and it is natural to extend u \equiv 0 for x > s(t) in a C1 continuous way.
We consider positive initial conditions for u in [0, s(0)). This is one of the forms of
the OD problem foreshadowed by the title. We consider several formulations in the
literature and in new results we show they are all equivalent. We introduce a new
formulation as the L2 gradient flow with constraint on the energy from the elliptic
obstacle problem. The obstacle problem has had considerable interest in the literature
[10, 5, 31, 16, 21], and in its simplest form, it is the steady state of the OD problem
with nonhomogeneous boundary conditions.

Remark 1. We highlight that the extra boundary condition for implicit moving
boundary value problems does not explicitly contain the interface velocity, hence this
velocity is determined implicitly . For free (steady state) boundary problems, where
the interface velocity is zero, the difference between implicit and explicit formulations
disappears.

Remark 2. The OD problem is also known as the oxygen diffusion problem in
the literature. We prefer the former name as it is the depletion, the second term on
the right-hand side of (1.1), rather than the diffusion, the first term on the right-hand
side of (1.1), that leads to the formation of moving boundaries.

We invite the reader to view computational examples of the dynamics in Fig-
ures 3.2, 3.3, and 3.4. Solutions of (1.1) can go negative, but physically relevant
values of concentration satisfy u \geq 0. In the one-dimensional (1D) case, preserving
nonnegativity results in the break up or merger of intervals where u > 0 as shown
in Figure 3.3. Topological change can be more complex in higher dimensions as seen
in Figure 3.4. Some of the problem formulations we consider can handle topological
changes while others cannot.

The paper is organized as follows. In section 2 we present the different formula-
tions and show their equivalence. In section 3 we present two numerical schemes. One
scheme gives high-accuracy solutions to the 1D problem without topological change.
The other scheme, based on our new gradient formulation of the problem, can be ap-
plied in higher dimensions and can handle topological changes. A convergence proof
for this new scheme is given. In section 4 we present some other implicit moving
boundary value problems of interest and indicate how our results can be extended to
them, with some open questions. The analysis of a biharmonic problem with gradient
flow structure follows directly from our new formulation of the OD problem. We end
with a short summary that includes a list of open problems.

Notation We define the space H1
+(\Omega ):=\{ u \in H1(\Omega ) : u \geq 0 a.e., \partial u

\partial n | \partial \Omega = 0\} . For
simplicity we considerd -dimensional open connected bounded domain \Omega = (0, 1)d with
homogeneous Neumann boundary conditions, where d = 1, 2, 3. We further denote \scrJ 
to be a collection of functions v \in L2(0, T ;H1(\Omega )) such that v(t) \in H1

+(\Omega ) for almost
all t \in (0, T ). In some instances, we denote the time derivative by \.u(t) and the space
derivative in the 1D case by u\prime (x). Given two quantities A and B, we use A \lesssim B to
denote that there exists a constant C > 0 such that A \leq C \cdot B.

2. Equivalent formulations.

2.1. 1D formulations without topological change.

2.1.1. Standard formulation in one dimension. The 1D OD problem with
associated moving boundary and initial conditions is as follows:
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54 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON\left\{                         

ut = uxx  - 1, 0 \leq x \leq s(t),

u(x, t) = 0, x > s(t),

ux(0, t) = 0, t > 0,

u(s(t), t) = ux(s(t), t) = 0, t > 0,

u(x, 0) = u0(x), 0 \leq x \leq 1,

s(0) = 1.

(2.1)

We assume here that u0 satisfies all necessary smoothness and compatibility assump-
tions needed in the analyses cited below. By literature convention, we consider here
a problem with a fixed, no-flux boundary condition at x = 0 and only one moving
boundary s(t) > 0. Uniqueness and lack of topological change when u\prime 

0 \leq 0 follow
from a modified maximum principle argument [8].

Existence can be seen by considering v = ut, which satisfies a standard Stefan
problem [6] with explicit interface velocity:\left\{             

vt = vxx, 0 \leq x \leq s(t),

vx(0, t) = 0, t > 0,

v(s(t), t) = 0, vx(s(t), t) =  - \.s(t), t > 0,

s(0) = 1,

with initial conditions v(0, x) = ut(x, 0) = u\prime \prime 
0(x) - 1. One can check that the function

u = u0(x)+
\int t

0
v d\tau solves the OD problem. To prove existence and uniqueness of the

Stefan problem, one can verify that the map

\scrT (s)(t):=1 - 
\int t

0

vx(s(\tau ), \tau )) d\tau , T \geq t \geq 0,

defines a contraction map [18].

Remark 3. The reformulation in v = ut to an explicit moving boundary problem
with interface velocity equal to  - vx can be reinterpreted as a normal velocity for the
problem for u with velocity equal to  - vx =  - utx =  - uxxx.

2.1.2. Mapped domain formulation in one dimension. Considering the
same smooth solutions without topological change in one dimension discussed above,
we consider s(t) > 0 in t \in [0, T ], take y = x/s(t), and reformulate the OD
problem as

uyy + \.ssyuy  - s2ut  - s2 = 0(2.2)

with boundary conditions uy(0, t) = u(1, t) = uy(1, t) = 0. Over a short time period,
we assume that \.s(t) and s(t) are uniformly bounded, thus the linear operator is
parabolic. Assuming s(t) is known, uniqueness of u is not an issue; however, to
prove uniqueness of the solution pair (u, s), we introduce the map \scrG : X \rightarrow Y , where
X is the closed subspace of H1(H2([0, s(t)]); [0, T ]) \times C1([0, T ]) that solves the OD
system and Y is the closed subspace of H1(H2([0, 1]); [0, T ]) \times C1([0, T ]) that solves
the reformulated system,

\scrG ((u(x, t), s(t)) = (u(y, t), s(t)):=(U(y \cdot s(t), t), s(t)),
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 55

where U(x, t) is the solution from the previous section. One can check that the map
\scrG is a bijection and so all solutions of (2.2) are equivalent to the solutions in the
standard formulation of section 2.1.1.

A numerical method based on this formulation is presented in section 3.1. The
computations in Figure 3.2 are done with a method based on this formulation.

2.2. Higher dimensional formulations that allow topological change. A
weak form of the solution can be introduced using a variational inequality approach
(2.3) [19, 23]. This is described in section 2.2.1 below. We use this formulation as the
basis for equivalence to the others. This formulation is amenable to approximation
using the augmented Lagrangian method [14, 13]. We then introduce a new formu-
lation as L2 gradient flow with constraint on the energy from the elliptic obstacle
problem in section 2.2.2. The computations in Figures 3.3 and 3.4 are done with a
method based on this formulation. We show a regularized approach with parameter
\epsilon , similar to the approach in [2], in section 2.2.3.

2.2.1. A parabolic variational inequality formulation. To proceed with
the discussion of the problem in higher dimensions with topological changes, we con-
sider the standard approach to weak solutions in this setting: a variational inequality
formulation [17, 19]. This approach has been well studied and we describe results in
the literature.

We consider the following problem: find a function u \in \scrJ with u(0) = u0 \in H1
+(\Omega )

that solves \int t

0

\int 
\Omega 

ut \cdot (v  - u) +

\int t

0

\int 
\Omega 

\nabla u \cdot \nabla (v  - u)

\geq 
\int t

0

\int 
\Omega 

(u - v); \forall v \in \scrJ , a.e. t \in (0, T ).(2.3)

Proposition 1. The variational inequality (2.3) has at most one solution and in
fact suppose u1 and u2 solve (2.3) with distinct initial conditions u10 and u20 ; then

\| u1  - u2\| L\infty (0,T ;L2(\Omega )) \leq \| u10  - u20\| L2(\Omega ).(2.4)

Proof. Note uj \in \scrJ satisfies (2.3) for j= 1,2, in particular\int t

0

\int 
\Omega 

\partial tu1 \cdot (u2  - u1) +

\int t

0

\int 
\Omega 

\nabla u1 \cdot \nabla (u2  - u1) \geq 
\int t

0

\int 
\Omega 

(u1  - u2),\int t

0

\int 
\Omega 

\partial tu2 \cdot (u1  - u2) +

\int t

0

\int 
\Omega 

\nabla u2 \cdot \nabla (u1  - u2) \geq 
\int t

0

\int 
\Omega 

(u2  - u1).

Summing the two inequalities above and denoting w = u1  - u2, one has\int t

0

\int 
\Omega 

\partial tw \cdot w +

\int t

0

\int 
\Omega 

\nabla w \cdot \nabla w \leq 0

=\Rightarrow 
\int t

0

\int 
\Omega 

(w2)t \leq 0 =\Rightarrow \| w\| L\infty (0,T ;L2(\Omega )) \leq \| w0\| L2(\Omega ).

Theorem 2.1. There exists a unique solution to the variational inequality (2.3).

Note that this can be done by a standard monotone operator argument and we
refer to [19].
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56 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

We show equivalance to the 1D formulations. Any smooth solution u to (2.1)
must solve (2.3) in the 1D case and by uniqueness the solution to (2.3) therefore
solves OD. To see this, we first observe that u \geq 0 and therefore u \in \scrJ . Resulting
from that, for any v \in \scrJ and for a.e. t \in (0, T ) by applying integration by parts we
obtain that\int t

0

\int 1

0

ut \cdot (v  - u) +

\int t

0

\int 1

0

ux \cdot (vx  - ux) =

\int t

0

\int s(\tau )

0

(ut  - uxx)(v  - u) dxd\tau 

=

\int t

0

\int s(\tau )

0

(u - v) dxd\tau \geq 
\int t

0

\int 
\Omega 

(u - v).

2.2.2. A gradient flow formulation. In this section, we formulate the OD
problem as the L2 gradient of the energy from the elliptic obstacle problem. A formal
calculation with

\scrE (t):=
\int 
\Omega 

\biggl( 
1

2
| \nabla u| 2 + u

\biggr) 
leads to

d\scrE 
dt

=  - 
\int 
\Omega 

(\Delta u - 1)2

after integration by parts. It is convenient to present the equivalence of the gradient
flow formulation as the limit of implicit time steps as this gets us halfway to the
convergence result for the fully discrete method described in section 3.2. The spatially
continuous, time discrete solutions un(x) approximates u(x, nk), where k is a time
step. We consider the following minimization problem for u = un+1 to the following
energy functional:

E[u] =

\int 
\Omega 

1

2
| \nabla u| 2 + 1

2k
(u - un)

2 + u,(2.5)

where u \in H1
+(\Omega ). Existence and uniqueness of the minimizer are guaranteed by the

standard calculus of variation technique and convexity of the energy functional [27].

Remark 4. By defining the discrete energy \scrE n:=
\int 
\Omega 

1
2 | \nabla un| 2+un, we can see that

\scrE n+1 \leq \scrE n. This can be derived by considering E[u] =
\int 
\Omega 

1
2 | \nabla u| 2 + u+ (u - un)

2

2k with
E[un+1] \leq E[un]. This gives the discrete gradient flow structure.

We will derive the corresponding Euler--Lagrange equation for the minimizing
problem following the idea from [10]. We give an adapted proof in our case for
completeness.

Theorem 2.2. Suppose un+1 is the unique minimizer to the energy minimizing
problem (2.5); then un+1 is the (weak) solution to the following modified backward
Euler scheme:

un+1  - un \cdot \chi \{ un+1>0\} 

k
= \Delta un+1  - \chi \{ un+1>0\} .

To begin with, we consider an equivalent energy minimizing problem:

\~E[u]:=

\int 
\Omega 

1

2
| \nabla u| 2 + 1

2k
u2 +

\biggl( 
1 - un

k

\biggr) 
u+ +

1

2k
u2
n(2.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 57

subject to

u \in \~\scrK :=

\biggl\{ 
v \in H1(\Omega ) :

\partial v

\partial n
| \partial \Omega = 0

\biggr\} 
,

where u+ = max(u, 0).

Lemma 2.3. There exists a unique \~u \in \~\scrK such that

\~E[\~u] = min
v\in \~\scrK 

\~E[v];

moreover, such \~u is the unique minimizer to (2.5).

Proof. First, by a similar argument, the existence and uniqueness of this energy
minimizing problem can be proved.

Now to show the equivalence of these two minimizing problems, we recall that
the minimizer u \geq 0, so

min
v\in H1

+(\Omega )
E[v] = E[u] = \~E[u] \geq min

v\in \~\scrK 
\~E[v].

On the other hand, in order to show

min
v\in \scrK 

E[v] \leq min
v\in \~\scrK 

\~E[v],

we note that for any v \in \~\scrK , the corresponding v+ \in H1
+(\Omega ). As a result,

E[u] \leq E[v+] \leq \~E[v]

for any v \in \~\scrK , and therefore we get

E[u] \leq min
v\in \~\scrK 

\~E[v].

Now since E[u] = \~E[u] = min \~E[v], we have \~u = u by the uniqueness.

It remains to derive the Euler--Lagrange equation for this new energy minimizing
scheme.

Proposition 2. Suppose u is the unique solution to the minimization problem
(2.6); then u is the (weak) solution to the following modified backward Euler scheme:

u - un \cdot \chi \{ u>0\} 

k
= \Delta u - \chi \{ u>0\} .

The proof of this result is found in Appendix A.
We follow the idea in [3] to formulate the minimization problem (2.5) as a varia-

tional inequality:

u \in H1
+(\Omega ) :

\int 
\Omega 

\nabla u\cdot \nabla (v - u)+
u

k
(v - u) dx \geq 

\int 
\Omega 

\Bigl( un

k
 - 1
\Bigr) 
\cdot (v - u) \forall v \in H1

+(\Omega ).(2.7)

To see the equivalence of the energy minimization and elliptic variational inequality
we now state the proposition.

Proposition 3. Any solution to the minimization problem (2.5) is also a solution
to the variational inequality (2.7) and vice versa.
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58 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

Proof. Suppose u is an energy minimizer to (2.5). Let v \in H1
+(\Omega ), and note that

H1
+(\Omega ) is convex; then (1 - \lambda )u+ \lambda v \in H1

+(\Omega ) for any \lambda \in [0, 1]. Using (1 - \lambda )u+ \lambda v
as a competitor in E[u] \leq E[(1 - \lambda )u+ \lambda v], we can derive from the order O(\lambda ),\int 

\Omega 

\nabla u \cdot \nabla (v  - u) +
u

k
(v  - u) dx \geq 

\int 
\Omega 

\Bigl( un

k
 - 1
\Bigr) 
\cdot (v  - u) \forall v \in H1

+(\Omega ).

The reverse can be proved similarly.

Note that this formulation uses convexity of H1
+(\Omega ); the optimal regularity of u

is C1,1
loc .

Theorem 2.4 (regularity). Suppose u is a solution to (2.5) (or (2.7)), then there
exists a positive constant C such that

\| \Delta u\| \infty \leq C

\biggl( 
1 +

1

k
\| un\| \infty + \| \Delta un\| \infty 

\biggr) 
.

Moreover, for each compact K \subset \Omega there exists a positive constant c(K) > 0 such
that

sup
i,j

sup
x\in K

| Diju(x)| \leq c(K).

The proof follows from [3], where a penalty argument is applied together with a
nondegeneracy argument, for which we refer to Lemma 1.2 in [3].

Remark 5. This upper bound can be improved by applying energy gradient flow.
By E[u] \leq E[un], we have

1

k
\| u - un\| 22 \leq \| \nabla un\| 22 + \| un\| 1.

By applying the penalty argument in [3], we can derive that

\| \Delta u\| 2 \leq C(\| un\| H2 + 1).

Now we will show the energy minimization scheme has a limit, as the time step
k \rightarrow 0, that solves the parabolic variational inequality (2.3). We study the energy
minimization scheme as in previous sections and by Proposition 3, it suffices to show
the following lemma.

Lemma 2.5 (Rothe's method). Recall that k is the small time step and suppose
for each j = 1, . . . ,M , where M = T/k, uj is the unique minimizer of Ej(u) in
H1

+(\Omega ). Here Ej(u) are defined similarly as in Theorem 2.2:

Ej(u):=

\int 
\Omega 

1

2
| \nabla u| 2 + 1

2k
(u - uj - 1)

2 + u.

Then u = limk\rightarrow 0 uM (x, t) exists and solves the parabolic variational inequality (2.3).
Here uM is the associated linear interpolation in time defined by

uM (x, t):=(1 - \theta ) \cdot uj(x) + \theta \cdot uj+1(x) for t = (j + \theta )k, \theta \in [0, 1).
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 59

Proof of Lemma 2.5. Our proof follows [15, 23]. First, note that uj is the unique
minimizer of Ej , and as discussed earlier in Proposition 3, it satisfies the elliptic
variational inequality (2.7):\int 

\Omega 

\nabla uj \cdot \nabla (v - uj)+
uj

k
(v - uj) dx \geq 

\int 
\Omega 

\Bigl( uj - 1

k
 - 1
\Bigr) 
\cdot (v - uj) \forall v \in H1

+(\Omega ).(2.8)

Taking v = uj - 1, one can derive

\langle \nabla uj ,\nabla (uj - 1  - uj)\rangle +
1

k
\langle uj , uj - 1  - uj\rangle \geq 

1

k
\langle uj - 1, uj - 1  - uj\rangle  - \langle 1, uj - 1  - uj\rangle .

Here and after we denote the L2 inner product in \Omega as \langle \cdot , \cdot \rangle . Similarly we take v = uj

in the j  - 1 inequality:

\langle \nabla uj - 1,\nabla (uj  - uj - 1)\rangle +
1

k
\langle uj - 1, uj  - uj - 1\rangle \geq 

1

k
\langle uj - 2, uj  - uj - 1\rangle  - \langle 1, uj  - uj - 1\rangle .

Adding the two inequalities above it follows that

1

k
\| uj  - uj - 1\| 22 + \| \nabla (uj  - uj - 1)\| 22 \leq 1

k
\langle uj  - uj - 1, uj - 1  - uj - 2\rangle .

Note that when j = 1, we choose v = u0 and hence

1

k
\| u1  - u0\| 22 + \| \nabla (u1  - u0)\| 22 \leq | \langle \nabla u0,\nabla (u1  - u0)\rangle | + | \langle 1, u0  - u1\rangle | 

\leq (\| \Delta u0\| 2 + 1) \cdot \| u1  - u0\| 2.

Therefore we obtain that \bigm\| \bigm\| \bigm\| \bigm\| uj  - uj - 1

k

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq C

for any j = 1, . . . ,M and a positive absolute constant C. Note that \.uM (t) =
uj+1 - uj

k ; therefore by the Arzel\`a--Ascoli theorem, uM (t) converges to some function
u in C([0, T ], L2(\Omega )). Then we can define

\widetilde uM (t) = uj for t \in [jk, (j + 1)k),

and similarly to Lemma 3.2 and Remark 7, \widetilde uM converges to the same u. Indeed,
\nabla uM converges to \nabla u weakly in L2((0, T ), L2(\Omega )). As a result we can rewrite (2.8)
as follows: for any v \in H1

+(\Omega ), we have

\langle \.uM (t), v(t) - \widetilde uM (t)\rangle + \langle \nabla \widetilde uM ,\nabla (v  - \widetilde uM )\rangle \geq  - \langle 1, v  - \widetilde uM \rangle (2.9)

for a.e. t \in (0, T ). It then implies that for arbitrary \tau 1 < \tau 2 in [0, T ],\int \tau 2

\tau 1

\langle \.uM (t), v(t) - \widetilde uM (t)\rangle + \langle \nabla \widetilde uM ,\nabla (v  - \widetilde uM )\rangle dt \geq  - 
\int \tau 2

\tau 1

\langle 1, v  - \widetilde uM \rangle dt,(2.10)

letting k \rightarrow 0, we derive the desired result\int \tau 2

\tau 1

\langle \.u(t), v(t) - u(t)\rangle + \langle \nabla u,\nabla (v  - u)\rangle dt \geq  - 
\int \tau 2

\tau 1

\langle 1, v  - u\rangle dt(2.11)

for almost every \tau 1 < \tau 2 in [0, T ].
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60 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

2.2.3. A regularized formulation. We introduce a formulation using a reg-
ularization method with parameter \epsilon proposed first in [2]. Here, we will see the
convergence in regularized solutions u\epsilon (x, t) as \epsilon \rightarrow 0 to the other OD formulations.
Its analysis is simplified since the approximating problems avoid handling the moving
interfaces directly. We include this approach for completeness. While there is the-
oretical insight to be gained from this formulation, it is unattractive for numerical
approximation for application purposes as moving interface locations are not easily
identified from \epsilon > 0 results.

\partial tu\epsilon = \Delta u\epsilon  - f\epsilon (u\epsilon ),(2.12)

where

f\epsilon (u\epsilon ) =

\left\{   
1, u\epsilon > \epsilon ,

u\epsilon 

\epsilon 
, u\epsilon \leq \epsilon ,

(2.13)

with the same initial condition u0(x). Note that the nonlinear term f\epsilon is Lipschitz in
u\epsilon and therefore by standard arguments u\epsilon are classical solutions in C1((0, T );C2(\Omega ))
for each \epsilon > 0 with u\epsilon (x, t) > 0 for all x \in \Omega and t > 0.

We consider u\epsilon 1 and u\epsilon 2 with \epsilon 1 < \epsilon 2. Denote their difference by w = u\epsilon 1  - u\epsilon 2 ;
then

\partial tw  - \Delta w =  - f\epsilon 1(u\epsilon 1) + f\epsilon 2(u\epsilon 2).

Note that

 - f\epsilon 1(u\epsilon 1) + f\epsilon 2(u\epsilon 2) =

\left\{                   

0 if u\epsilon 1 > \epsilon 1, u\epsilon 2 > \epsilon 2,

 - u\epsilon 1

\epsilon 1
+ 1 if u\epsilon 1 \leq \epsilon 1, u\epsilon 2 > \epsilon 2,

 - 1 +
u\epsilon 2

\epsilon 2
if u\epsilon 1 > \epsilon 1, u\epsilon 2 \leq \epsilon 2,

 - u\epsilon 1

\epsilon 1
+

u\epsilon 2

\epsilon 2
if u\epsilon 1 \leq \epsilon 1, u\epsilon 2 \leq \epsilon 2.

(2.14)

We observe that

 - 1 +
u\epsilon 2

\epsilon 2
\leq 0 if u\epsilon 1 > \epsilon 1, u\epsilon 2 \leq \epsilon 2,

 - u\epsilon 1

\epsilon 1
+

u\epsilon 2

\epsilon 2
=  - w

\epsilon 1
+ u\epsilon 2 \cdot 

\biggl( 
1

\epsilon 2
 - 1

\epsilon 1

\biggr) 
if u\epsilon 1 \leq \epsilon 1, u\epsilon 2 \leq \epsilon 2,

u\epsilon 1 < u\epsilon 2 if u\epsilon 1 \leq \epsilon 1, u\epsilon 2 > \epsilon 2,

so if we assume the maximal value of w is achieved at (x0, t0) with x0 \in \Omega and t0 > 0,
then w(x0, t0) > 0, \partial tw(x0, t0) = 0, and \Delta w(x0, t0) \leq 0. Then the standard maximum
principle gives a partial result of the following statement.

Theorem 2.6. Given a family of classical solutions \{ u\epsilon \} \epsilon in C1((0, T );C2(\Omega ))
that solve (2.12), then u\epsilon is monotonically decreasing as \epsilon decreases to 0. Moreover,
the limiting function

lim
\epsilon \rightarrow 0

u\epsilon = u

holds pointwise. This limiting function u solves the variational inequality (2.3).

The details of the proof can be found in Appendix B. An alternate convergence
statement and proof are given in Appendix C.
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 61

2.3. Conjecture on the general dynamics in one dimension. We make the
following plausible conjecture for the general dynamics (including topological changes)
of the Cauchy problem in one dimensionwith initial conditions u0(x) \in H1

+(\Omega ) with
compact support. Here, we consider the problem for all space rather than half space
with a no-flux condition at x = 0.

Conjecture 1. Assume u0 has a finite \scrS (0) where \scrS (t) counts the number of
moving boundary points:

\scrS (t) = \{ x : u(x, t) = 0 and u(y, t) > 0 for some y in every neighborhood of x\} .

Then

(i) \scrS (t) is finite for every t > 0,
(ii) there exists a finite increasing sequence of times tj , j = 0, . . . ,M , with t0 = 0

and card\scrS (t) := nj constant on every interval (tj , tj+1) and u \equiv 0 for t \geq tM ,
(iii) \scrS (t) = \{ s1(t) < s2(t) < . . . snj (t)\} for sl(t) smooth on (tj , tj+1),
(iv) u(\cdot , t) is in C1(\Omega ) for any t > 0 and in C\infty (\Omega ) except at moving boundary

points.

Recent related results have been shown for the Stefan problem [9]. Similar analysis
of the OD problem is complicated by the reaction term that allows the formation of
new zones of constraint (u \equiv 0).

3. Numerical approximation. We consider two numerical methods. The first,
suitable for 1D dynamics without topological change, is based on the mapped domain
formulation described in section 2.1.2. The second, suitable for dynamics in higher
dimensions including topological change, is based on our new gradient formulation
described in section 2.2.2. We prove convergence of this scheme.

3.1. Mapped domain (Y formulation) method. We consider the discretiza-
tion of the mapped domain formulation (2.2) in space using cell centered finite dif-
ferences. We first discretize in space, leaving time continuous (known as a method of
lines (MoL) discretization) with approximations uj(t) \approx u((j - 1/2)h, t), j = 1, . . . , N,
where h is the uniform grid spacing with N subintervals of y \in [0, 1]. The interface
location s(t) is approximated by S(t).

Boundary conditions are implemented using ghost points [29] u0(t) \approx u( - h/2, t)
and uN+1(t) \approx u(1+h/2, t) depicted in Figure 3.1. Boundary conditions at y = 1 are
implemented using second order averages and differences,

Fig. 3.1. Cell centered finite difference spatial approximation of the 1D mapped domain for-
mulation.
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62 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

(uN+1 + uN )/2 = 0,(3.1)

(uN+1  - uN )/h = 0,(3.2)

which implies that uN = uN+1 = 0. The no-flux boundary condition at y = 0 is
approximated similarly. The MoL discretization for the interior equations is

D2u
j + S \.SyD1u

j  - S2 \.uj  - S2 = 0,(3.3)

where D2 and D1 are the standard centered second order finite difference operators.
The system (3.1), (3.2), (3.3) is a differential algebraic equation (DAE) [1] and has
index one. For computational results, we use implicit (backward) Euler time stepping
with Newton iterations for the resulting nonlinear system at each time step. In a
computational study, we observe errors of size O(h2)+O(k) where k is the time step,
as expected for a second order spatial and a first order temporal discretization.

Remark 6. The convergence of the method has not been proved.

3.1.1. Computational results. Examples of the dynamics computed with the
DAE formulation in the mapped region are shown in Figure 3.2. The left figure shows
the solution with initial conditions u0(x) = (1 - x)2/2 for x \in [0, 1] considered often in
the literature. It is the steady state of the problem forced with flux condition ux =  - 1
at x = 0 [6]. In this solution, s(t) moves monotonically to the left. The solution in
this formulation ends when s(T ) = 0 (u \equiv 0). A specialized method in this general
framework was developed in [20] to accurately compute both the solution and the end
time T of the dynamics. Our mapped formulation breaks down as t \rightarrow T . The right
computation of Figure 3.2 with initial conditions u0 =  - x4 + 3x3  - 5x2/2 + 1/2 for
x \in [0, 1] shows that s(t) does not have to be monotone decreasing. Here, s(t) initially
moves to the right driven by diffusion and then to the left as u values decrease due to
the consumption term.

3.2. Gradient flow method. In this section, we continue the discretization of
the gradient flow formulation from section 2.2.2 and discretize in space with ui,j

n \approx 
u(ih, jh, nk). We consider the discretization in two spatial dimension for ease of

Fig. 3.2. 1D solutions of the OD problem without topological change. Left: initial conditions
u0(x) = (1 - x)2/2 (standard problem in the literature), s(t) decreases monotonically. Right: initial
conditions u0(x) =  - x4 + 3x3  - 5x2/2 + 1/2, s(t) initially moves to the right driven by diffusion
and then to the left as u values decrease due to the consumption term.
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 63

presentation but the argument extends to other dimensions. The energy minimization
problem (2.5) is approximated by the discrete minimization of

EN
n+1 =

h2

2

N - 1\sum 
i,j=0

\biggl( \biggl( 
ui+1,j  - ui,j

h

\biggr) 2

+

\biggl( 
ui,j+1  - ui,j

h

\biggr) 2\biggr) 

+ h2
N\sum 

i,j=0

\biggl( 
1

2k

\bigl( 
ui,j  - ui,j

n

\bigr) 2
+ ui,j

\biggr) 
,(3.4)

where N is the number of grid points with N = 1/h, assuming without loss of gen-
erality that all positive values of u are captured in (0, 1) \times (0, 1). We solve this
minimization problem subject to all nonnegative discrete data:

\vec{}uN
n+1:=

\Bigl( 
u1,1
n+1, u

2,1
n+1, . . . , u

N,1
n+1, u

1,2
n+1, . . . , u

N,N
n+1

\Bigr) 
.

This is a convex, quadratic minimization problem with linear inequality constraints
and so has a unique global minimum. We show below that the solution to the discrete
optimization problem converges to the OD solutions as h, k \rightarrow 0. In section 3.2.1 we
discuss the technique we use to solve the discrete optimization problem. Denoting
M = T/k, we use \{ \vec{}un\} n=1 to define an approximate solution:

uN,M (x, t):=

\left\{               

(1 - t) \cdot u0(x) + t \cdot uN
1 (x) for t \in [0, k),

\cdot \cdot \cdot 
(1 - t) \cdot uN

m(x) + t \cdot uN
m+1(x) for t \in [mk, (m+ 1)k),

\cdot \cdot \cdot 
(1 - t) \cdot uN

M - 1(x) + t \cdot uN
M (x) for t \in [(M  - 1)k, T ],

(3.5)

where u0(x) is the initial condition and for 1 \leq m \leq M and uN
m is the linear (bilinear)

approximation function. In particular when x = (x1, x2) \in [ih, (i+1)h)\times [jh, (j+1)h)
we define uN

m as follows:

(3.6)

uN
m(x1, x2) = h - 2

\Bigl( 
ui,j
m ((i+ 1)h - x1)((j + 1)h - x2) + ui,j+1

m ((i+ 1)h - x1)(x2  - jh)

+ ui+1,j
m (x1  - ih)((j + 1)h - x2) + ui+1,j+1

m (x1  - ih)(x2  - jh)
\Bigr) 
.

Therefore we have when (x1, x2) \in (ih, (i+ 1)h)\times (jh, (j + 1)h)

\partial 1u
N
m(x1, x2) = h - 2

\bigl( 
(ui+1,j

m  - ui,j
m )((j + 1)h - x2) + (ui+1,j+1

m  - ui,j+1
m )(x2  - jh)

\bigr) 
,

\partial 2u
N
m(x1, x2) = h - 2

\bigl( 
(ui,j+1

m  - ui,j
m )((i+ 1)h - x1) + (ui+1,j+1

m  - ui+1,j
m )(x1  - ih)

\bigr) 
.

Therefore, by direct computation we obtain that\int (j+1)h

jh

\int (i+1)h

ih

(\partial 1u
N
m)2 dx1dx2 =

1

3
(ui+1,j

m  - ui,j
m )2 +

1

3
(ui+1,j+1

m  - ui,j+1
m )2(3.7)

+
1

3
(ui+1,j+1

m  - ui,j+1
m )(ui+1,j

m  - ui,j
m ).

Moreover the pointwise limit

um = lim
N\rightarrow \infty 

uN
m(3.8)
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64 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

exists. For convenience we also define

\widetilde uN
m(x):=

N\sum 
i,j=1

ui,j
m \cdot \chi ((i - 1)h,ih)(x1)\chi ((j - 1)h,jh)(x2),(3.9)

where \chi I is the characteristic function on the interval I. We also define

uM (x, t) := (1 - t) \cdot um(x) + t \cdot um+1(x) for t \in [mk, (m+ 1)k).(3.10)

Remark 7. We observe that both approximations uN
m(x) and \widetilde uN

m(x) will converge
to the same limit in L2(\Omega ) as N \rightarrow \infty and similarly for uN,M (x, t) and \widetilde uN,M (x, t)
as N \rightarrow \infty . The Arzel\`a--Ascoli theorem and the finite energy assumption then imply
the uniform convergence as in Lemma 2.5.

Theorem 3.1. Suppose \vec{}uN
n+1 solves the discrete minimization problem (3.4); then

for any (x, t) \in \Omega \times (0, T ) we have

u(x, t) = lim
M\rightarrow \infty 

lim
N\rightarrow \infty 

uN,M (x, t)

with h = 1/N and k = T/M in \scrJ , where uN,M (x, t) is defined in (3.5). Moreover u
is the solution to the variational inequality (2.3), that is,\int t

0

\int 
\Omega 

ut \cdot (v  - u) +

\int t

0

\int 
\Omega 

\nabla u \cdot \nabla (v  - u)

\geq 
\int t

0

\int 
\Omega 

u - v; \forall v \in \scrJ , a.e. t \in (0, T ).

The proof relies on two lemmas. To start with, we give definitions of gamma conver-
gence of energy functionals shown in Lemma 3.2 as given in [7].

Definition 1 (Gamma convergence). We say that the sequence of functionals
\{ \scrE l\} : X \rightarrow \BbbR \cup \{  - \infty ,+\infty \} where X is a metric space, \Gamma -converges to \scrE if the
following conditions are satisfied:

i whenever xl \rightarrow x, \scrE (x) \leq lim inf l \scrE l(xl);
ii for any x \in X, there exists xl \rightarrow x in X such that lim supl \scrE l(xl) \leq \scrE (x).

The following is a relevant property of \Gamma -convergence.

Proposition 4. Suppose X is a metric space and there exists a sequence of
functionals \scrE l defined in X that \Gamma -converges to \scrE . Assume that for each l, xl is a
minimizer of \scrE l. If \=x is a cluster point of \{ xl\} , then \=x is a minimizer of \scrE .

We refer for the proof to [7, Corollary 7.20]. We then consider the following
energy functional:

En+1(un+1) =

\int 
\Omega 

1

2
| \nabla un+1| 2 +

1

2k
(un+1  - un)

2 + un+1,

where un+1(x) is defined in (3.8).

Lemma 3.2 (Gamma convergence of discrete functionals). For each n, EN
n+1

\Gamma -converges to En+1 as N \rightarrow \infty or equivalently h \rightarrow 0 in L2(\Omega ).
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 65

Proof of Lemma 3.2. We follow the proof in [7].
To show (i), let uN

n+1 \in L2(\Omega ) such that lim inf EN
n+1(u

N
n+1) < +\infty and therefore

there exists a subsequence uNl
n+1 such that limENl

n+1(u
Nl
n+1) = lim inf EN

n+1(u
N
n+1). For

each l, there exists a mesh of grid points and a vector \vec{}uNl
n+1 (\in \BbbR Nl+2 \times \BbbR Nl+2 in

the 2D Neumann boundary condition case) such that the corresponding uNl
n+1(x) is

defined in (3.5)--(3.6). Then by Remark 7, both uNl
n+1 and \widetilde uNl

n+1 converge to the same
limit u in L2. By (3.7) we also have

h2
Nl - 1\sum 
i,j=0

\biggl( \Biggl( 
ui+1,j
n+1  - ui,j

n+1

h

\Biggr) 2

+

\Biggl( 
ui,j+1
n+1  - ui,j

n+1

h

\Biggr) 2\biggr) 
\geq 
\int 
\Omega 

| \nabla uNl
n+1| 2.

Thus \int 
\Omega 

| \nabla u| 2 \leq lim
l

\int 
\Omega 

| \nabla uNl
n+1| 2

\leq lim inf
N

h2
N - 1\sum 
i,j=0

\left(  \Biggl( ui+1,j
n+1  - ui,j

n+1

h

\Biggr) 2

+

\Biggl( 
ui,j+1
n+1  - ui,j

n+1

h

\Biggr) 2
\right)  .

On the other hand,

h2 \cdot 
Nl\sum 

i,j=0

\biggl( 
1

2k

\Bigl( 
ui,j
n+1  - ui,j

n

\Bigr) 2
+ ui,j

n+1

\biggr) 
=

\int 
\Omega 

1

2k
(\widetilde uNl

n+1  - 
\widetilde uNl
n )2 + \widetilde uNl

n+1.

Applying the uniform convergence we obtain that\int 
\Omega 

1

2k
(u - un)

2 + u \leq lim
k

\int 
\Omega 

1

2k
(\widetilde uNl

n+1  - 
\widetilde uNl
n )2 + \widetilde uNl

n+1 \leq lim inf
N

h2

\cdot 
N\sum 

i,j=0

\biggl( 
1

2k

\Bigl( 
ui,j
n+1  - ui,j

n

\Bigr) 2
+ ui,j

n+1

\biggr) 
.

These two estimates lead to En+1(u) \leq lim inf EN
n+1(u

N
n+1).

It remains to prove (ii). Suppose u \in L2 with En+1(u) < +\infty , so u \in H1. We
then define ui,j

n+1:=u( i
N , j

N ), which defines the vector \vec{}uN
n+1 with the piecewise linear

(bilinear) approximation uN
n+1(x) and piecewise constant approximation \widetilde uN

n+1(x). By
the finite energy assumption, the Arzel\`a--Ascoli theorem then guarantees the uniform
convergence as in Remark 7. It then follows that

lim supEN
n+1(u

N
n+1) \leq En+1(u).

The 1D and 3D cases can be treated similarly.

As a result of Lemma 3.2 and Proposition 4, we obtain the following corollary
immediately.

Corollary 3.3. Suppose uN
n+1 are minimizers of EN

n+1; then uN
n+1 converges to

a function un+1 in L2(\Omega ) up to a subsequence as h \rightarrow 0 and such that un+1 is the
minimizer of En+1.

Now that um:= limN uN
m is the minimizer of the continuous functional Em form =

1, . . . ,M , it remains to show that u(x, t) = limM\rightarrow \infty uM (x, t) solves the variational
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66 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

inequality (2.3). Recalling Rothe's method (Lemma 2.5) and combining results of
Lemmas 3.2 and 2.5, we therefore complete the proof of Theorem 3.1.

3.2.1. Discrete optimization scheme. We consider the details of the discrete
optimization problem (3.4) and present the scheme in the 2D case. (Note that this
scheme holds in one and three dimensions similarly.) The corresponding Lagrangian
problem is

 - \Delta hu+
u

k
+ \lambda =

un

k
 - 1,

\lambda (j1,j2) < 0, u(j1,j2) = 0 \forall (j1, j2) \in J,

\lambda (i1,i2) = 0, u(i1,i2) \geq 0 \forall (i1, i2) \in I,

where I and J are a disjoint partition of the grid points and \Delta h is the finite difference
Laplacian. The u in the problem is the grid vector at the next time step un+1. The
partitions divide those points J where the values are at the constraint and those points
I (``I"" for inactive constraint) with positive solution values where the corresponding
derivative of EN must be zero. The method is an active set method, where the
sets J and I are updated iteratively at each time step. Note that \lambda (j1,j2) < 0 for
(j1, j2) \in J corresponds to \partial EN/\partial u(j1,j2) > 0, a necessary and sufficient condition
for optimality (the KKT conditions [28]). There are many techniques available to
solve such quadratic optimization problems with linear inequality constraints. We
take advantage of the simple structure of the problem and the fact that there is little
change in the index sets from one time step to the next in the following algorithm.
It is an iterative algorithm with vectors u(m), \lambda (m) at each iteration. The matrix
A = I/k  - \Delta h, where I is the identity.

Algorithm.

Step 1 Initialize u(0) \geq 0 (componentwise), \lambda (0) = min\{ 0, un

k  - 1 - Au(0)\} . Setm = 0.
Repeat Steps 2--5 until the convergence criterion in Step 3 is reached.

Step 2 Construct the index sets

J (m) = \{ (j1, j2) : \lambda (m),(j1,j2) < 0\} ,

I(m) = \{ (j1, j2) : \lambda (m),(j1,j2) = 0\} .

For any (i1, i2) \in I(m) such that u(m),(i1,i2) < 0, move (i1, i2) to J (m).
Step 3 If J (m) = J (m - 1), the solution u = u(m). Stop.
Step 4 Solve for u(m+1) and \lambda using

Au(m+1) + \lambda =
un

k
 - 1,

\lambda = 0 on I(m),

u(m+1) = 0 on J (m).

This is equivalent to solving sequentially for (u(m+1), \lambda ) that satisfy

AIIu
(m+1)
I =

\Bigl( un

k
 - 1
\Bigr) 
I
,

u
(m+1)
J = 0,

\lambda =
un

k
 - 1 - Au(m+1).
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 67

Here vector subscripts I and J give the subvectors with those components
and AII is the block of the matrix A corresponding to the I components.

Step 5 Update \lambda (m+1) = min\{ 0, \lambda \} . Increment m.

Theorem 3.4. Let 0 \leq u(0) \leq u (componentwise). The algorithm above con-
verges in finitely many steps.

Proof. A proof is found following closely the ideas from [14] for a similar approach
to the elliptic obstacle problem. Monotone behavior in the index sets I(m) is shown
and since N is finite, the algorithm converges in finite steps. Use is made of the
properties that the submatrix A - 1

II has positive entries (AII is monotone) and AIJ

has nonpositive entries (values zero or  - 1/h2) for any index sets I and J .

Remark 8. While the proof of iteration convergence above is limited to starting
conditions 0 \leq u(0) \leq u, we implement the method with u(0) = un and starting index
sets from the converged iterations at time step n. This initialization falls out of the
scope of the analysis but works well (no failures, few iterations) in practice.

Remark 9. Similar index (active set) iteration methods have been used in captur-
ing methods for other implicit boundary value problems. Two of these are discussed
in section 4. A general theory for the convergence of these iteration strategies is not
known, but they can perform well in practice.

3.2.2. Numerical results. We show results in one dimensionwith topological
change in Figure 3.3. Initial conditions are

u0(x) =

\left\{     
((1/3 - x).2 + 0.05)/((5/12)2 + 0.05)/16, x \in [0, 3/4],

(1 - x)2, x \in [3/4, 1],

0, x \geq 1.

A 2D example is shown in Figure 3.4. This example has more complicated topological
changes described in the figure caption. Based on evidence from other computations,
the limiting circular shape is generic.

Fig. 3.3. 1D solution of the OD problem with topological changes with the gradient flow method.
Initial conditions are given in section 3.2.2.
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68 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

Fig. 3.4. A 2D solution of the OD problem with topological change computed with the gradient
flow method. Solution contours are shown with time increasing from top left to bottom right. Overall
solution levels decrease in time with depletion. Two topological changes occur. The first is the merger
of the two disjoint sets of u > 0, and the second is the disappearance of the center u = 0 set.

4. Other implicit moving boundary value problems.

4.1. A biharmonic problem. The OD problem is the simplest second order
implicit moving boundary problem. The simplest fourth order problem is the following
biharmonic problem shown in one dimension for u(x, t):

ut =  - uxxxx  - 1

with conditions u = 0, ux = 0, and uxxx = 0 at the implicitly defined moving
boundary x = s(t) and u \equiv 0 for x > s(t). This can be derived from the scaled,
linear, viscoelastic motion of a beam above a flat, rigid surface. Note that another
boundary value problem occurs if uxxx = 0 is replaced by uxx = 0. However, the
third order condition is correct for this application [25] and also gives the gradient
flow structure described below.

We consider the time discretization of this problem as in section 2.2.2 and see
that it is a discrete L2 gradient flow on the energy

\scrE :=
\int 

1

2
| \Delta u| 2 + u

with u \in H2
+. We form a fully discrete scheme as in section 3.2 and compute

the discrete optimization at each time step using index iterations as described in
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 69

Fig. 4.1. Two computations at three times each for the biharmonic moving boundary value
problem with physical boundary conditions u(0) = 1, uxx = 0 approaching the analytic steady state
solution shown in dark blue.

section 3.2.1. The convergence of the method follows the same ideas as presented for
the OD problem. Some computational results are shown in Figure 4.1.

Remark 10. There has been considerable mathematical interest in the elliptic
obstacle problem as discussed in the introduction. This is the steady state of the
OD problem with nonzero physical boundary conditions. The steady state of the
biharmonic problem (in higher dimensions) described in this section would also be
mathematically interesting. Its analysis would be complicated by the lack of a maxi-
mum principle.

4.2. Vector problems. The moving boundary in complex fluids with yield
stress is of implicit type and is well studied [11]. Numerical approaches include regu-
larization (increased viscosity in the unyielded region) and an augmented Lagrangian
approach to the nonsmooth optimization problem that comes from a discretization
of a variational inequality formulation. The literature on this problem is focused on
capturing the unyielded region rather than considering the moving boundary directly.

Implicit moving boundaries in porous media flow can occur when phase change
is present. Boundaries between dry and two-phase (where liquid and vapor are pres-
ent) regions were studied in [12, 4]. The work in [4] had important implications to
simulations of water management in fuel cells. However, many theoretical questions
were left unanswered and this became the motivation of the authors to attempt the
current work.

We present below a class of implicit moving boundary value problems that gen-
eralizes the OD problem. The problems are presented in one dimensionwith a single
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70 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

moving boundary at x = s(t) with ul(x, t) having n components for x < s(t) and
ur(x, t) having m components for x > s(t). Near the interface we take

u\ast 
t = D\ast u\ast 

xx + a\ast 

for \ast \in \{ l, r\} , D\ast positive diagonal matrices, and a\ast constant vectors. At the bound-
ary, we take

B

\left[      
ul

ul
x

ur

ur
x

\right]      = 0,

where B is an (m+ n+1)\times (2m+2n) matrix of full rank. This class can be reached
from a wider class by taking affine combinations of solution components and x, and
as an approximation of some nonlinear problems. A problem statement can be made
by adding far field conditions, n on the left and m on the right. With these far field
conditions we label the class as n+m implicit moving boundary value problems. The
OD problem is the only well-defined example of the 1+0 class. The model in [4] is
of class 2+2, although one of the components has degenerate diffusion at the moving
boundary.

There are several open questions related to problems of this type motivated by the
current work on the OD problem. Which lead to well-defined problems? Which have
gradient flow or variational inequality structure? Which allow a capturing formulation
with index iteration similar to that described in section 3.2.1 (true of the model in
[4])?

5. Summary. This work summarizes the ways the OD problem has been con-
sidered in the literature: with interfaces to be tracked, captured, or found as a limit of
regularized problems. We fill in a gap in the list of formulations, showing that the OD
problem can be considered as a gradient flow with constraint. A new numerical cap-
turing method based on the gradient flow formulation is proposed and a convergence
proof given. The equivalence of all formulations is shown. A biharmonic implicit
moving boundary value problem and a class of vector problems are introduced.

Several open problems have been presented in the work and are summarized here:
\bullet The regularity of boundary point positions in one dimension (Conjecture 1)

and higher dimensions.
\bullet A direct analysis of the mapped domain formulation discussed in section

2.1.2 that would possibly extend to a convergence proof of its numerical
approximation (section 3.1) and an understanding of the general class of
vector problems in section 4.2.

\bullet A convergence proof for the index iteration (active set) approach that has
been successful in discretizations of implicit moving boundary value prob-
lems; see Remarks 8 and 9.

\bullet A study of the biharmonic obstacle problem discussed in Remark 10.
\bullet An understanding of the general class of vector problems introduced in section

4.2.
We hope the reader will find some of these problems of interest.

Appendix A. Proof of Proposition 2. With help from the minimality of u,
we consider a competing function u+\varepsilon \phi where \phi is an arbitrary smooth function that
is compactly supported inside \Omega . By the definition of \~E[u], it follows that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

7/
23

 to
 2

02
.1

20
.2

34
.9

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 71

\~E[u+ \varepsilon \phi ] \geq \~E[u],

that is,

\varepsilon 

\int 
\Omega 

\nabla u \cdot \nabla \phi +
\varepsilon 2

2

\int 
\Omega 

| \nabla \phi | 2 + \varepsilon 

k

\int 
\Omega 

u\phi +
\varepsilon 2

2k

\int 
\Omega 

\phi 2 \geq  - 
\int 
\Omega 

\biggl( 
1 - un

k

\biggr) 
[(u+ \varepsilon \phi )+  - u].

(A.1)

Note that\int 
\Omega 

\biggl( 
1 - un

k

\biggr) 
[(u+ \varepsilon \phi )+  - u] = \varepsilon 

\int 
\{ u+\varepsilon \phi \geq 0\} 

\biggl( 
1 - un

k

\biggr) 
\phi  - 

\int 
\{ u+\varepsilon \phi <0\} 

\biggl( 
1 - un

k

\biggr) 
u,

and ignoring the O(\varepsilon 2) terms in (A.1), we have

\varepsilon 

\int 
\Omega 

\nabla u \cdot \nabla \phi +
\varepsilon 

k

\int 
\Omega 

u\phi  - \varepsilon 

\int 
\{ u+\varepsilon \phi \geq 0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi +

\int 
\{ u+\varepsilon \phi <0\} 

\biggl( 
1 - un

k

\biggr)  - 

u

(A.2)

\geq  - \varepsilon 

\int 
\{ u+\varepsilon \phi \geq 0\} 

\biggl( 
1 - un

k

\biggr) +

\phi +

\int 
\{ u+\varepsilon \phi <0\} 

\biggl( 
1 - un

k

\biggr) +

u.

In fact we have

0 \leq 
\int 
\{ u+\varepsilon \phi <0\} 

\biggl( 
1 - un

k

\biggr) \pm 

u <  - \varepsilon 

\int 
\{ u+\varepsilon \phi <0\} 

\biggl( 
1 - un

k

\biggr) \pm 

\phi ,

hence (A.2) turns out to be\int 
\Omega 

\nabla u \cdot \nabla \phi +
1

k

\int 
\Omega 

u\phi  - 
\int 
\{ u+\varepsilon \phi \geq 0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi  - 
\int 
\{ u+\varepsilon \phi <0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi 

\geq  - 
\int 
\{ u+\varepsilon \phi \geq 0\} 

\biggl( 
1 - un

k

\biggr) +

\phi .

Moreover, we also recall that u \geq 0; then in the L1 sense as \varepsilon \rightarrow 0,\Biggl\{ 
\chi \{ u+\varepsilon \phi \geq 0\} \rightarrow \chi A\phi \cup \{ u>0\} ,

\chi \{ u+\varepsilon \phi <0\} \rightarrow \chi \{ u=0\} \cap \{ \phi <0\} ,

where A\phi :=\{ u = 0\} \cap \{ \phi \geq 0\} . Clearly, A\phi and \{ u > 0\} are disjoint. This leads to\int 
\Omega 

\nabla u \cdot \nabla \phi +
1

k

\int 
\Omega 

u\phi  - 
\int 
\Omega 

\chi A\phi \cup \{ u>0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi  - 
\int 
\Omega 

\chi \{ u=0\} \cap \{ \phi <0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi 

\geq  - 
\int 
\Omega 

\chi A\phi \cup \{ u>0\} 

\biggl( 
1 - un

k

\biggr) +

\phi ,

or equivalently, \int 
\Omega 

\nabla u \cdot \nabla \phi +
1

k

\int 
\Omega 

u\phi +

\int 
\Omega 

\chi A\phi \cup \{ u>0\} 

\biggl( 
1 - un

k

\biggr) 
\phi (A.3)

 - 
\int 
\Omega 

\chi \{ u=0\} \cap \{ \phi <0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi \geq 0.
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72 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

Define a distribution

T (\phi ):=

\int 
\Omega 

\nabla u \cdot \nabla \phi +
1

k

\int 
\Omega 

u\phi +

\int 
\Omega 

\chi \{ u>0\} 

\biggl( 
1 - un

k

\biggr) 
\phi ;

then by (A.3),

T (\phi ) \geq  - 
\int 
A\phi 

\biggl( 
1 - un

k

\biggr) 
\phi +

\int 
\{ u=0\} \cap \{ \phi <0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi .

Since \phi is arbitrary, we may replace it with  - \phi and as a result,\left\{         
T (\phi ) \geq  - 

\int 
A\phi 

\biggl( 
1 - un

k

\biggr) 
\phi +

\int 
\{ u=0\} \cap \{ \phi <0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi ,

T (\phi ) \leq  - 
\int 
\{ u=0\} \cap \{ \phi \leq 0\} 

\biggl( 
1 - un

k

\biggr) 
\phi +

\int 
\{ u=0\} \cap \{ \phi >0\} 

\biggl( 
1 - un

k

\biggr)  - 

\phi .

(A.4)

Therefore, | T (\phi )| \leq C| | \phi | | \infty for some positive constant C; thus by a density argument
we derive that T is a radon measure, i.e., there exists a density function \rho (x) such
that

T (\phi ) =

\int 
\Omega 

\rho \phi dx.

However, by (A.4), we get \rho = 0 a.e. in \{ u > 0\} ; moreover, by the definition of T we
get \rho = 0 a.e. in \{ u = 0\} . This shows that T (\phi ) = 0, or

 - \Delta u+
1

k
u+ \chi \{ u>0\} 

\biggl( 
1 - un

k

\biggr) 
= 0

in the weak sense. Equivalently,

u - un \cdot \chi \{ u>0\} 

k
= \Delta u - \chi \{ u>0\} .

Appendix B. Proof of Theorem 2.6. As the discussion in section 2.2.3
showed, u = lim\epsilon \rightarrow 0 u\epsilon exists pointwise by monotonicity. It remains to show u is the
solution to (2.3), that is,\int t

0

\int 
\Omega 

\partial tu \cdot (v  - u) +

\int t

0

\int 
\Omega 

\nabla u \cdot \nabla (v  - u)

\geq 
\int t

0

\int 
\Omega 

u - v; \forall v \in \scrJ , a.e. t \in (0, T ).

Intuitively, suppose that f is a smooth approximation; then by maximum principle
| \nabla u\epsilon | \leq sup\Omega | \nabla u0| for any x \in \Omega and \epsilon > 0. Thus | \nabla u| \leq sup\Omega | \nabla u0| ; therefore, by
Dini's theorem, such convergence is uniform, and as a result, u \in \scrJ because u also
satisfies the boundary condition and initial condition. Once we have such uniform
boundedness of \nabla u\epsilon , \nabla u\epsilon converges to \nabla u weakly and as a result,

lim
\epsilon 

\int t

0

\int 
\Omega 

\nabla u\epsilon \cdot \nabla (v  - u) =

\int t

0

\int 
\Omega 

\nabla u \cdot \nabla (v  - u)

and

lim
\epsilon 

\int t

0

\int 
\Omega 

 - f\epsilon (u\epsilon )\cdot (v - u) =  - 
\int t

0

\int 
\Omega 

\chi \{ u>0\} \cdot (v - u) =  - 
\int t

0

\int 
\Omega 

v - u+

\int t

0

\int 
\Omega 

\chi \{ u=0\} \cdot v.
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FORMULATIONS OF THE OXYGEN DEPLETION PROBLEM 73

Indeed we have weak convergence of \partial tu\epsilon thanks to the equation

lim
\epsilon 

\int t

0

\int 
\Omega 

\partial tu\epsilon \cdot (v  - u) = lim
\epsilon 

\int t

0

\int 
\Omega 

 - f(u\epsilon ) \cdot (v  - u) - \nabla u\epsilon \cdot \nabla (v  - u).

Since u\epsilon converges to u pointwise and strongly in L2((0, T );L2(\Omega )), then up to a
subsequence

lim
\epsilon 

\int t

0

\int 
\Omega 

\partial tu\epsilon \cdot (v  - u) =

\int t

0

\int 
\Omega 

\partial tu \cdot (v  - u).

Note that since v \geq 0,

 - 
\int t

0

\int 
\Omega 

\chi \{ u>0\} \cdot (v  - u) \geq  - 
\int t

0

\int 
\Omega 

v  - u,

therefore \int t

0

\int 
\Omega 

\partial tu \cdot (v  - u) +

\int t

0

\int 
\Omega 

\nabla u \cdot \nabla (v  - u)

\geq 
\int t

0

\int 
\Omega 

u - v; \forall v \in \scrJ , a.e. t \in (0, T ).

It then suffices to show the H1 uniform boundedness of u\epsilon , i.e., the H1 bound of u\epsilon 

is independent of \epsilon . To see this without using smooth f(u\epsilon ) we write down u\epsilon in the
mild form:

u\epsilon (t) = et\Delta u0 +

\int t

0

e(t - s)\Delta (f\epsilon (u\epsilon )) ds,

where et\Delta represents convolution with heat kernel. As a result, for any first order
differential operator D we have

Du\epsilon = Det\Delta u0 +

\int t

0

De(t - s)\Delta (f\epsilon (u\epsilon )) ds

and hence

\| Du\epsilon \| 2 \leq \| Det\Delta u0\| 2 +
\int t

0

\| De(t - s)\Delta f(u\epsilon )\| 2 ds.

Note that since et\Delta u0 solves the standard heat equation with initial data u0, we have

\| Det\Delta u0\| 2 = \| et\Delta Du0\| 2 \lesssim \| Du0\| 2 \lesssim 1

for any t \in (0, T ). On the other hand,

\| De(t - s)\Delta f(u\epsilon )\| 2 \lesssim \| De(t - s)\Delta f(u\epsilon )\| \infty = | K \ast f(u\epsilon )| ,

where K is the kernel corresponding to De(t - s)\Delta . Since | f | \leq 1,

| K \ast f(u\epsilon )| \leq \| K\| 2 \cdot \| f(u\epsilon )\| 2
\lesssim \| K\| 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

7/
23

 to
 2

02
.1

20
.2

34
.9

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



74 XINYU CHENG, ZHAOHUI FU, AND BRIAN WETTON

We see that from the Fourier side

\| K\| 22 \lesssim 
\sum 
k\in \BbbZ d

| k| 2e - 2(t - s)| k| 2

=
\sum 
| k| \geq 1

| k| 2e - 2(t - s)| k| 2

\lesssim 
\int \infty 

1

e - 2(t - s)r2r1+d dr .

For the 1D case, first we observe that

\int \infty 

1

e - 2(t - s)r2r2 dr =

\surd 
2\pi [1 - erf(

\sqrt{} 
2(t - s))] + 4

\surd 
t - se - 2(t - s)

16(t - s)3/2

\lesssim 
1 - erf(

\sqrt{} 
2(t - s))

(t - s)3/2
+

e - 2(t - s)

t - s
,

where erf(x) = 2\surd 
\pi 

\int x

0
e - t2 dt, the Gauss error function. Therefore,

\| De\gamma \Delta f(u\epsilon )\| 2 \lesssim 

\Bigl( 
1 - erf(

\sqrt{} 
2(t - s))

\Bigr) 1/2
(t - s)3/4

+
e - (t - s)

(t - s)1/2
.

Now we would assume t \geq 1, as the other case t < 1 is easier. Letting \gamma = t  - s, we
split the following integral into two parts:

\int t

0

\| De\gamma \Delta f(u\epsilon )\| 2 d\gamma =

\int 1

0

\| De\gamma \Delta f(u\epsilon )\| 2 d\gamma +

\int t

1

\| De\gamma \Delta f(u\epsilon )\| 2 d\gamma .

(i) Then we have \bigl( 
1 - erf(

\surd 
2\gamma )
\bigr) 1/2

\gamma 3/4
\lesssim 

e - \gamma 

\gamma 5/4
,

thus \int t

1

\| De\gamma \Delta f(u\epsilon )\| 2 d\gamma \lesssim 
\int t

1

e - \gamma 

\gamma 3/4
+

e - \gamma 

\gamma 1/2
d\gamma 

\lesssim 
\int t

1

e - \gamma 

\gamma 1/2
d\gamma 

\lesssim 
\int \infty 

1

e - \gamma 

\gamma 1/2
d\gamma 

\lesssim 1.
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(ii) We use another estimate for \| K \ast f(u\epsilon )\| 2. We compute from the Fourier side:

\| K \ast f(u\epsilon )\| 22 =
\sum 
| k| \geq 1

| k| 2e - 2\gamma | k| 2 | \widehat f(u\epsilon )(k)| 2

\leq max
| k| \geq 1

\Bigl\{ 
| k| 2e - 2\gamma | k| 2

\Bigr\} 
\cdot 
\sum 
| k| \geq 1

| \widehat f(u\epsilon )(k)| 2

\lesssim max
| k| \geq 1

\Bigl\{ 
| k| 2e - 2\gamma | k| 2

\Bigr\} 
\cdot \| f(u\epsilon )\| 22

\lesssim max
| k| \geq 1

\Bigl\{ 
| k| 2e - 2\gamma | k| 2

\Bigr\} 
.

Define g(x) = x2e - 2\gamma x2

, where x \geq 0. Then,

g\prime (x) = xe - 2\gamma x2 \bigl( 
1 - 2\gamma x2

\bigr) 
;

this shows the maximum is achieved at x = 1\surd 
2\gamma 

and hence

g(x) \leq g

\biggl( 
1\surd 
2\gamma 

\biggr) 
\leq 1

\gamma 
,

thus

\| De\gamma \Delta f(u\epsilon )\| 2 \lesssim 
1
\surd 
\gamma 
.

As a result,\int 1

0

\| De\gamma \Delta f(u\epsilon )\| 2 d\gamma \lesssim 
\int 1

0

1
\surd 
\gamma 

d\gamma \cdot \| f(u\epsilon )\| 2 \lesssim 1.

Similar arguments can be applied to the 2D and 3D cases. In what follows,

\| Du\epsilon \| 2 \lesssim 1

for any t \in (0, T ) and the bound is independent of \epsilon .

Appendix C. Another proof of the regularization result. We recall the
variational inequality setting (2.3), that is, to solve u \in H1

+(\Omega ),\int t

0

\langle \partial tu - \Delta u+ 1, v  - u\rangle \geq 0 \forall v \in \scrJ .

As in [13], it then has an equivalent formulation, that is, to solve u(t) and \lambda \ast (t),\Biggl\{ 
\partial tu - \Delta u+ 1 =  - \lambda \ast (t) \geq 0,

u \geq 0, \langle u(t), \lambda \ast (t)\rangle = 0 \forall t > 0.
(C.1)

To approach this, we introduce a regularized approximation family; we aim to find uc

for any c > 0 such that the following holds weakly:

\partial tuc  - \Delta uc + 1 +min (0, - 1 + cuc) = 0.

By defining \lambda c = min (0, - 1 + cuc), we can rewrite the above scheme as

\partial tu
c  - \Delta uc + 1 + \lambda c = 0.
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It is typical to write the regularization term in this way in some literature, but the
approach is the same as the regularization in section 2.2.3 with c = 1/\epsilon . We then
discretize it in time: for any \phi \in H1, the following holds:\biggl\langle 

uc
n+1  - uc

n

k
, \phi 

\biggr\rangle 
+
\bigl\langle 
\nabla uc

n+1,\nabla \phi 
\bigr\rangle 
+ \langle 1, \phi \rangle +

\bigl\langle 
min(0, - 1 + cuc

n+1), \phi 
\bigr\rangle 
= 0,(C.2)

where uc
0 is chosen to be u0. We write un instead of uc

n for simplicity. Note that the
operator A(u):=u

k  - \Delta u + min(0, - 1 + cu) is coercive and monotone. As a result,
there exists a unique solution un+1 \in H1 for sufficiently small k > 0 independent of
c > 0. To show un+1 \in H1

+(\Omega ), we prove by induction. Assuming un \in H1
+(\Omega ), we

test the (C.2) with (un+1)
 - . Therefore we derive that

1

k
\langle un+1, (un+1)

 - \rangle +
\bigl\langle 
\nabla un+1,\nabla (un+1)

 - \bigr\rangle + \langle 1, (un+1)
 - \rangle 

+
\bigl\langle 
min(0, - 1 + cun+1), (un+1)

 - \bigr\rangle 
=

1

k
\langle un, (un+1)

 - \rangle \leq 0.

We observe that \langle \nabla un+1,\nabla (un+1)
 - \rangle = \langle \nabla (un+1)

 - ,\nabla (un+1)
 - \rangle \geq 0. Moreover,

\langle 1, (un+1)
 - \rangle + \langle min(0, - 1 + cun+1), (un+1)

 - \rangle = c\langle (un+1)
 - , (un+1)

 - \rangle \geq 0. We thus
obtain that \langle un+1, (un+1)

 - \rangle \leq 0 and hence un+1 \in H1
+(\Omega ). We then define

uc
M (x, t) = un +

t - nk

k
(un+1  - un) for t \in [nk, (n+ 1)k),

where M = T/k. By the same argument in Lemma 2.5, we have uc
M converges to

function uc in L2(0, T ;H1) as M \rightarrow \infty up to a subsequence. In fact, it is easy to see
that uc is the solution to (C.2). On the other hand, we show that uc converges to u\ast 

as c \rightarrow \infty .

Theorem C.1 (monotonicity). Let uc
n+1 and uc be defined as above. If 0 <

c \leq b, then uc
n+1 \geq ub

n+1 for all n = 0, 1, 2, . . .. Therefore uc(t) \geq ub(t) as a direct
application.

Proof. The proof is given by induction. Suppose uc
n \geq ub

n and for each n define
\lambda c
n by

\lambda c
n+1 = min(0, - 1 + cuc

n+1).

Then the proof is similar to the one showing uc
n+1 \geq 0; we have that

1

k
\langle uc

n+1  - ub
n+1, (u

c
n+1  - ub

n+1)
 - \rangle +

\bigl\langle 
\nabla (uc

n+1  - ub
n+1),\nabla (uc

n+1  - ub
n+1)

 - \bigr\rangle 
+
\bigl\langle 
\lambda c
n+1  - \lambda b

n+1, (u
c
n+1  - ub

n+1)
 - \bigr\rangle = 1

k
\langle un

c  - ub
n, (u

c
n+1  - ub

n+1)
 - \rangle \leq 0.

Note that cuc
n+1  - bub

n+1 \leq cuc
n+1  - cub

n+1 for c \leq b and hence \langle \lambda c
n+1  - \lambda b

n+1, (u
c
n+1  - 

ub
n+1)

 - \rangle \geq 0. We thus obtain that uc
n+1 \geq ub.

As a corollary of the monotonicity, we obtain the existence of u(t) and show that
it solves (C.1). Uniqueness can be proved similarly as in [13].
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