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Abstract: We show the existence of nontrivial stationary weak solutions to the surface
quasi-geostrophic equations on the two dimensional periodic torus.

1. Introduction

Consider the two dimensional dissipative surface quasi-geostrophic (SQG) equations
for θ = θ(x, t) : T2 × [0,∞)→ R:

⎧
⎪⎨

⎪⎩

∂tθ + u · ∇θ = −ν�γ θ, in T
2 × (0,∞);

u = ∇⊥�−1θ = (−∂2�
−1θ, ∂1�

−1θ) = (−R2θ,R1θ);
θ |t=0 = θ0,

(SQG)

where ν ≥ 0 is the viscosity, 0 < γ ≤ 2 and T
2 = [−π, π ]2 is the periodic torus.

Here the unknown scalar function θ denotes the potential temperature in the context of
geophysical fluid dynamics [8,13]. This transport equation models the evolution of the
temperature in a fast rotating stratified fluid and can be derived from amore complete 3D
system via Boussinesq approximation [13]. In Eq. (SQG), R = (R1,R2) is the pair of
Riesz transforms and∇⊥ = (−∂2, ∂1). For s ≥ 0 the fractional Laplacian �s = (−�)

s
2

is defined by (under suitable assumptions on θ ) �̂sθ(k) = |k|s θ̂ (k) for k ∈ Z
2. For

negative s the formula is restricted to nonzero wave numbers. We consider solutions
with zero mean, i.e.

∫

T2 θ(x, t) dx = 0, which is invariant under the dynamics thanks
to incompressibility. The purpose of this work is to construct stationary weak solutions
to (SQG). By using integration by parts, one way to define stationary weak solutions to
(SQG) is to drop the ∂tθ term and require

−
∫

T2
θu · ∇φ dx = −ν

∫

T2
θ�γ φ dx, ∀φ ∈ C∞(T2). (1.1)
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However, this definition requires the strong assumption θ ∈ L2 which did not take into
account of the incompressibility condition. On the other hand, it is possible to define

stationary weak solutions using the mere Ḣ− 1
2 -regularity. The starting point is to note

that the operatorsR j , j = 1, 2 are skew-symmetric, i.e. 〈R j f, g〉 = −〈 f,R j g〉 where
〈, 〉 denotes the usual L2 (real) inner product. Using this one can derive for θ ∈ L2

(below [A, B] = AB − BA is the usual commutator):

〈θR jθ, φ〉 = −1

2
〈θ, [R j , φ]θ〉, ∀φ ∈ C∞(T2).

Since ‖[R j , φ]θ‖
Ḣ

1
2

� ‖φ‖H3‖θ‖
Ḣ−

1
2
(see Proposition 5.1), it is then not difficult to

see that Ḣ− 1
2 -regularity suffices for defining a stationary weak solution.

Definition 1.1. We say θ ∈ Ḣ− 1
2 (T2) with zero mean is a stationary weak solution to

(SQG) if

1

2

∫

T2
(�−

1
2 θ) ·� 1

2 ([R⊥,∇ψ]θ)dx = −ν

∫

T2
(�−

1
2 θ)�γ+ 1

2 ψdx, ∀ψ ∈ C∞(T2),

where [R⊥,∇ψ]θ = −[R2, ∂1ψ]θ + [R1, ∂2ψ]θ .
In the non-steady case, weak solutions in L2

t,loc Ḣ
− 1

2
x can be defined similarly by

employing time-dependent test functions. Resnick [14] proved the global existence of
a weak solution to (SQG) for ν ≥ 0 and 0 < γ ≤ 2 in L∞t L2

x for any initial data θ0 ∈
L2
x (T

2). Marchand [12] obtained a global weak solution in L∞t H
− 1

2
x for θ0 ∈ Ḣ

− 1
2

x (R2)

or L∞t L p
x for θ0 ∈ L p

x (R2), p ≥ 4
3 , when ν > 0 and 0 < γ ≤ 2. Note that inMarchand’s

result, the inviscid case ν = 0 requires p > 4/3 since the embedding L
4
3 ↪→ Ḣ− 1

2 is

not compact, whereas for the diffusive case one has extra L2
t Ḣ

γ
2− 1

2 a prior control given
by the energy identity.

For non-stationary smooth solutions with zero mean, one has conservation (ν = 0)

or dissipation (ν > 0) of Ḣ− 1
2 -Hamiltonian. Indeed for ν = 0 by using the identity

(below P<J is a smooth frequency projection to {|k| ≤ constant · 2J })

1

2

d

dt
‖�− 1

2 P<J θ‖22 = −
∫

P<J (θR⊥θ) · P<JRθdx,

one can prove the conservation of ‖�− 1
2 θ‖22 under the assumption θ ∈ L3

t,x (see also
[10]). We also mention that for the non-dissipative case in the positive direction unique-
ness of SQG patches with moving boundary satisfying the arc-chord condition was
obtained in recent [4].

In this paper, we prove the non-uniqueness of stationary weak solutions to (SQG).

Theorem 1.2. For any ν ≥ 0, γ ∈ (0, 3
2 ), and

1
2 ≤ α∗ < 1

2 + min( 16 ,
3
2 − γ ), there

exist infinitely many stationary weak solutions θ to (SQG) with zero mean satisfying
�−1θ ∈ Cα∗(T2).

Remark 1.3. The restriction γ < 3
2 in Theorem 1.2 can be seen by a crude heuristic using

the plane wave ansatz localized around frequency λ. The domination of nonlinearity
versus dissipation yields ‖�−1θ‖∞ � λγ−2. The Hölder regularity of �−1θ yields
‖�−1θ‖∞ � λ−α∗ where α∗ > 1

2 . Thus γ ≤ 2− α∗ < 3
2 .
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The convex integration scheme developed in the seminal works [6,7] can be applied
to general active scalar models such as ∂tθ + ∇ · (θu) = 0 where û = m(k)θ̂(k) and
m(k) is a general Fourier multiplier. By using a plane wave ansatz θ = akeiλk·x +
a∗k e−iλk·x with |k| = 1 and λ � 1, one can extract the non-oscillatory part of ∇ · (θu)

as ∇ · (|ak |2(m(−λk) + m(λk))) which vanishes if m is odd. This is known as the odd
multiplier obstruction [5,10,15]. Previously the non-uniqueness results were established
only for active scalar equations with non-odd multipliers [10,15]. In [1] this issue was
resolved for the time-dependent SQG, by using the momentum equation1 for v = �−1u
and rewriting the nonlinearity u · ∇v − (∇v)T · u as the sum of a divergence of a 2-
tensor, and a gradient of a scalar function. In particular, weak solutions �−1θ ∈ Cσ

t C
β
x ,

1
2 < β < 4

5 , σ <
β

2−β
, with any prescribed energy ‖�− 1

2 θ(t)‖2 = e(t) ∈ C∞c were
constructed when ν ≥ 0, 0 < γ < 2 − β. Note that the restriction β − 1 < 1 − γ

accords with the critical ‖θ‖L∞t Ċ1−γ norm. Recently Isett and Ma [9] give another direct
approach at the level of θ . For some more recent application of convex integration to
other fluid models, see [2,3,11] and the references therein.

The modest goal of this work is to introduce another approach2 to overcome the
odd multiplier obstruction by working directly with the scalar function f = �−1θ and
developing a concise framework tailor-made for similar problems. From our analysis it
appears that the indirect momentum formulation emphasized in [1] can be circumvented
and one can settle the problem directly using the special structure of SQG. Returning
to the plane wave ansatz, a decisive step for the SQG nonlinearity is to identify the
nontrivial non-oscillatory part after removing the∇⊥-direction.More precisely, consider
f =∑

l al(x) cos(λl · x) where |l| = 1 and λ� 1, then (see Lemma 2.1)

� f =
∑

l

(
λ f + (l · ∇)al sin(λl · x) + (T (1)

λl al) cos(λl · x) + (T (2)
λl al) sin(λl · x)

)
.

By a short computation we arrive at

� f∇⊥ f
◦≈ −1

4
λ

∑

l

(l · ∇)(a2l )l
⊥ + error terms,

where the notation
◦≈ is defined in (1.2). We then use a novel algebraic lemma (Lemma

2.2) to obtain nontrivial projection in the gradient direction. One should note that in
the above computation, the leading O(λ2) term vanishes which completely accords
with the odd multiplier obstruction problem mentioned earlier. What is remarkable is
that in the next O(λ) term there is nontrivial non-oscillatory contribution coming from
the commutator piece [�, al ] cos λx . This seems to be the crucial technical difference
between SQG and Euler.

Our next result is about the weak rigidity of solutions in the time-dependent case. It

improves Theorem 1.3 of [10] all the way from L p
t L

2
x , p > 2 to L2

t Ḣ
− 1

2 +. The proof
can be found in Sect. 5.

Theorem 1.4 (Weak rigidity). Let ν ≥ 0 and 0 < γ ≤ 2. Suppose f = limn θn is a weak
limit of solutions (SQG) in L2

t Ḣ
s for s > − 1

2 . Then f must also be a weak solution.

1 This approach originates from an exposition in [17], which dates back to Resnick’s thesis [14].
2 Our work was first completed in the summer of 2018 when all three authors were at UBC and we thank

the mathematics department for its hospitality.
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Notation. For any two quantities A and B, A � B denotes A ≤ CB for some absolute
constant C > 0. Similarly, A � B means A ≥ CB, and A ∼ B when A � B and
A � B. For a real number X , we use X+ for X + ε when ε > 0 is sufficiently small.
For example the space L2+ means L2+ε for some ε > 0 sufficiently small. For any two
vector functions v and w, we denote

v
◦≈ w, if v = w + ∇⊥ p (1.2)

holds for some smooth scalar function p. The mean of f on T
2 is denoted by f =

1
(2π)2

∫

T2 f (x)dx . We define the function space C∞0 (T2) as

C∞0 (T2) =
{
f ∈ C∞(T2) : f = 0

}
. (1.3)

For any 1 ≤ p ≤ ∞, we denote ‖ f ‖p = ‖ f ‖L p(T2) as the usual Lebesgue norm. For

f on T
2, we follow the Fourier transform convention f̂ (k) = 1

(2π)2

∫

T2 f (x)e−i x ·kdx
and f (x) =∑

k∈Z2 f̂ (k)eik·x . The convolution operation ∗ is defined by ( f ∗ g)(x) =
1

(2π)2

∫

T2 f (x − y)g(y)dy, which implies f̂ ∗ g(k) = f̂ (k)ĝ(k) and f̂ g(k)

=∑
l∈Z2 f̂ (l)ĝ(k − l).

For s ∈ R, the homogeneous Ḣ s -Sobolevnorm is definedby‖ f ‖Ḣ s (T2) =
(∑

0 �=k∈Z2

|k|2s | f̂ (k)|2
) 1

2
.

Parameters. Throughout this paper, we fix parameters as follows. ν ≥ 0, 0 < γ < 3
2 ,

λn =
⌈
λb

n

0

⌉
, rn = λ−β

n , μn+1 = (λn+1λn)
1
2 , n ∈ N ∪ {0}, (1.4)

where �·� denotes the ceiling function. Here we first choose 0 < β < min( 13 , 3−2γ ) to

satisfy 1+β
2 > α∗ where the prescribed regularity index α∗ was specified in Theorem 1.2.

We then choose b− 1 ∈ (0, b0) so that α = 1
2 +

β
2b − (b− 1)3 ≥ α∗ where b0 is defined

in Proposition 3.1. Lastly λ0 was chosen sufficiently large according to Proposition 3.1.
See also Appendix 5 for more explicit dependence of constants and the rationale for

the specific choices.

2. Construction of the Perturbation

For f = �−1θ the steady-state SQG equation is ∇ · (� f∇⊥ f
) = −ν�γ+1 f which

follows from � f∇⊥ f
◦≈ ν�γ−1∇ f. The idea is to find approximate solutions

( f≤n, qn) ∈ C∞0 (T2)× C∞0 (T2) solving the relaxed equation

� f≤n∇⊥ f≤n
◦≈ ν�γ−1∇ f≤n + ∇qn, (2.1)

such that qn → 0 in the limit. This will be done inductively.
Writing f≤n+1 = f≤n + fn+1, we first show that for given qn one can solve

� fn+1∇⊥ fn+1 + ∇qn ◦≈ small error, (2.2)
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where the left hand side is the main piece in

(� fn+1∇⊥ fn+1 + ∇qn) + � f≤n∇⊥ fn+1 + � fn+1∇⊥ f≤n
◦≈ ∇qn+1 + ν�γ−1∇ fn+1. (2.3)

2.1. Derivation of the leading order part. Consider the ansatz ( f = fn+1)

f (x) =
∑

l

al(x) cos(λl · x), (2.4)

where the frequency of al is much smaller than λ and the summation over l is finite.

Lemma 2.1 (Leibniz). Let |l| = 1, λl ∈ Z
2, and g(x) = a(x) cos(λl · x). Then,

�g = λg + (l · ∇a) sin(λl · x) + (T (1)
λl a) cos(λl · x) + (T (2)

λl a) sin(λl · x),
where

̂
T (1)

λl a(k) =
( |λl + k| + |λl − k|

2
− λ

)

â(k),

̂
T (2)

λl a(k) = i

( |λl + k| − |λl − k|
2

− l · k
)

â(k). (2.5)

Proof. We begin with the following simple fact: if T̂mg(k) = m(k)ĝ(k), then ∀n ∈ Z
2,

Tm(g(x)ein·x ) = (Tm1g)e
in·x , where m1(k) = m(k + n). Noting that �̂g(k) = |k |̂g(k),

we have

�(a(x) cos(λl · x)) = 1

2
�(a(x)eiλl·x ) + 1

2
�(a(x)e−iλl·x ) = 1

2
�m1(a)eiλl·x

+
1

2
�m2(a)e−iλl·x ,

where �̂m1a(k) = |k + λl| and �̂m2a(k) = |k − λl|. The desired identity then follows
rearranging terms. ��

By using Lemma 2.1, we have

� f∇⊥ f
◦≈ main + non-oscillatory error + oscillatory error , (2.6)

where (below l⊥ = (−l2, l1)ᵀ for l = (l1, l2)ᵀ)

main = − 1

4
λ

∑

l

(l · ∇)(a2l )l⊥,

non-oscillatory error = − 1

2
λ

∑

l

(T (2)
λl al )al l

⊥ +
1

2

∑

l

(T (1)
λl al )∇⊥al ,

oscillatory error = 1

2

∑

l

(l · ∇al + T (2)
λl al )(λal l

⊥ cos(2λl · x) + ∇⊥al sin(2λl · x)) (osc1)

− 1

2

∑

l

(T (1)
λl al )(λal l

⊥ sin(2λl · x)− ∇⊥al cos(2λl · x)) (osc2)
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−λ
∑

l �=l′
(l · ∇al + T (2)

λl al )al′ (l ′)⊥ sin(λl · x) sin(λl ′ · x) (osc3)

+
∑

l �=l′
(l · ∇al + T (2)

λl al )∇⊥al′ sin(λl · x) cos(λl ′ · x) (osc4)

−λ
∑

l �=l′
(T (1)

λl al )al′ (l ′)⊥ cos(λl · x) sin(λl ′ · x) (osc5)

+
∑

l �=l′
(T (1)

λl al )∇⊥al′ cos(λl · x) cos(λl ′ · x). (osc6)

Note that the leading-order term λ f∇⊥ f in � f∇⊥ f vanishes since ∇⊥ (
λ
2 f 2

) ◦≈ 0.

2.2. Matching. We begin with a simple yet powerful lemma.

Lemma 2.2 (Algebraic Lemma). For a given Q ∈ C∞0 (T2), we have the decomposition
identity

2∑

j=1
l⊥j (l j · ∇)(Ro

j Q)
◦≈ ∇Q,

where l1 = ( 35 ,
4
5 )

ᵀ, l2 = (1, 0)ᵀ, and the Riesz-type transforms Ro
j , j = 1, 2 are

defined by

R̂o
1(k1, k2) =

25(k22 − k21)

12|k|2 , R̂o
2(k1, k2) =

7(k22 − k21)

12|k|2 +
4k1k2
|k|2 . (2.7)

Proof. This follows from the identity
∑2

j=1(l⊥j · ∇)(l j · ∇)(Ro
j Q) = �Q. ��

Proposition 2.3. Set l j and Ro
j , j = 1, 2 as in Lemma 2.2. For given qn ∈ C∞0 (T2),

choose C0 ≥ 2 to be a fixed constant and

aperfectj,n+1 = 2

√
rn

5λn+1

√

C0 +Ro
j
qn
rn

, (2.8)

where (λn+1, rn) are taken as in (1.4). Then

−1

4
· (5λn+1) ·

( 2∑

j=1
l⊥j (l j · ∇)(aperfectj,n+1 )2

)
+ ∇qn ◦≈ 0. (2.9)

Proof. The proof follows from applying Lemma 2.2 to Q = qn . Note herewe choose the
specific form 5λn+1 with λn+1 ∈ N for the following technical reason: in Lemma 2.1, we
need λl ∈ Z

2; in Lemma 2.2, l1 = ( 35 ,
4
5 )

ᵀ; clearly we need to choose λ = 5λn+1 ∈ 5N.
��
We now choose

fn+1(x) =
2∑

j=1
a j,n+1(x) cos(5λn+1l j · x), a j,n+1 = P≤μn+1a

perfect
j,n+1 , (2.10)

where P̂≤μn+1g(k) = ψ( k
μn+1

)ĝ(k), and ψ ∈ C∞c (R2) satisfies ψ(k) = 0 for |k| ≥ 1,

and ψ(k) = 1 for |k| ≤ 1
2 . We have � fn+1∇⊥ fn+1 + ∇qn ◦≈ small error. In the next

section we estimate the errors.
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3. Error Estimates

In this section we prove the following proposition which is the key in the whole iteration
procedure.

Proposition 3.1. Given ν ≥ 0, 0 < γ < 3
2 and 0 < β < min

( 1
3 , 3− 2γ

)
, there exists

b0 = b0(ν, γ, β) such that for any 0 < b− 1 < b0 we can find �0 = �0(ν, γ, β, b) for
which the following holds. If λ0 ≥ �0 and ( f≤n, qn) satisfies
• the frequencies of f≤n and qn are localized to ≤ 6λn and ≤ 12λn, respectively,
• ‖ f≤n‖Cα(T2) ≤ 100 and ‖qn‖X ≤ rn where

α = 1

2
+

β

2b
− (b − 1)3;

‖q‖X := ‖q‖∞ +
2∑

j=1
‖Ro

j q‖∞, (3.1)

andRo
j is defined in (2.7). Then there exists qn+1 ∈ C∞0 (T2) solving (2.3)with frequency

localized to ≤ 12λn+1, fn+1 defined by (2.10) satisfying

‖qn+1‖X ≤ rn+1. (3.2)

We now explain the motivation for choosing the X -norm in (3.1). First of all, q = qn
represents the residual error at step n and in the Hölderian context an ideal choice is
to use ‖q‖∞ only. However, there are Riesz-type operators Ro

j , j = 1, 2 which appear
somewhat inevitably in the “matching” process (see for example Proposition 2.3 and
especially (2.8)). For this reason it is necessary to include ‖Ro

j q‖∞ in the working
X -norm. To prove Proposition 3.1, we need several technical lemmas.

Lemma 3.2. Suppose a : T
2 → R, a ∈ L∞(T2) such that a = 0 with supp(̂a) ⊂

{|k| ≤ μ} and μ ≥ 10. Let m ∈ C∞(R2 \ {0}) be a homogeneous function of degree
0 and Tm is the Fourier multiplier defined by T̂m f (k) = m(k) f̂ (k), then we have
‖Tma‖∞ � ‖a‖∞ logμ. Here the implied constant depends on m.

Proof. Using the Littlewood–Paley decomposition [16], splitting into low and high fre-
quencies and choosing integer J ∼ 2 logμ, we obtain

‖Tma‖∞ � (J + 3)‖a‖∞ + 2−J‖∇a‖∞
� (J + 3 + 2−Jμ)‖a‖∞ � ‖a‖∞ logμ.

��
We now state two useful facts. Assume f ∈ C∞(T2) and K ∈ L1(R2) with m(ξ) =∫

R2 K (z)e−iξ ·zdz. Then3

(Tm f )(x) :=
∑

k

m(k) f̂ (k)eik·x =
∫

R2
K (z) f (x − z)dz, (3.3)

‖Tm f ‖L p
x (T2) ≤ ‖K‖L1

x (R
2)‖ f ‖L p

x (T2), ∀ 1 ≤ p ≤ ∞. (3.4)

3 Here and below we still denote by f its periodic extension to all of R
2.
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Assume f, g ∈ C∞(T2) and K ∈ L1(R2 × R
2) with m(ξ, η) = ∫

R2×R2 K (z1, z2)

e−iξ ·z1−iη·z2dz1dz2. Then

Tm( f, g)(x) :=
∑

k

( ∑

k′∈Z2

m(k′, k − k′) f̂ (k′)ĝ(k − k′)
)
eik·x (3.5)

=
∫

R2×R2
K (z1, z2) f (x − z1)g(x − z2)dz1dz2, (3.6)

and consequently ‖Tm( f, g)‖Lrx (T2) ≤ ‖K‖L1
x (R

2×R2)‖ f ‖L p
x (T2)‖g‖Lq

x (T
2) for any 1 ≤

r, p, q ≤ ∞ with 1
r = 1

p + 1
q .

Lemma 3.3. Assume b0 : T2 → R with supp(b̂0) ⊂ {|k| ≤ μ} and 10 ≤ μ ≤ 1
2λ. Then

(see (2.5))

‖T (1)
λl b0‖∞ � λ−1μ2‖b‖∞, ‖T (2)

λl b0‖∞ � λ−2μ3‖b0‖∞,

‖�−1∇T (2)
λl b0‖X � ‖b0‖∞λ−2μ2 logμ.

Proof. We show only the first one as the rest are similar. Choose φ1 ∈ C∞c (R2) such that
φ1(ξ) ≡ 1 for |ξ | ≤ 1 andφ1(ξ) ≡ 0 for |ξ | ≥ 1.1. Denoteφ2(z) = |l+z|+|l−z|−2 and
note that for |z| ≤ 2

3 we have φ2(z) =∑2
i, j=1 hi j (z)zi z j for some hi j ∈ C∞. By (3.4) it

suffices to show ‖F‖L1
x (R

2) � λ−2μ2 for F(x) = ∫

R2 φ2(λ
−1ξ)φ1(μ

−1ξ)eiξ ·xdξ . This

follows from a change of variable μ−1ξ → ξ and integration by parts. For the third
estimate we note �−1∇T (2)

λl b0 = �−1∇T (2)
λl (b0 − b0) and apply Lemma 3.2. ��

Lemma 3.4. Let supp(b̂0) ⊂ {|k| ≤ μ}, μ ≤ 1
2λ. For m

(a)
� = m(a)

�,λ,μ, a = 1, 2, 3,
defined by

b0T
(2)
λl b0 = μ2

λ2

2∑

�=1
∂x�

T
m(1)

�

(b0, b0), (T (1)
λl b0)∂x1b0 =

μ2

λ

2∑

�=1
∂x�

T
m(2)

�

(b0, b0),

(T (1)
λl b0)∂x2b0 =

μ2

λ

2∑

�=1
∂x�

T
m(3)

�

(b0, b0),

we have4 ‖K (a)
� ‖L1(R4) := ‖F−1(m(a)

� )‖L1(R4) � 1 with the implicit constants indepen-
dent of λ and μ.

Proof. Observe that for |z| ≤ 2
3 , φ(z) = |l+z|−|l−z|−2l ·z =∑2

i, j,k=1 hi jk(z)zi z j zk
for some hi jk ∈ C∞. Choose φ1 ∈ C∞c (R2) such that φ1(ξ) ≡ 1 for |ξ | ≤ 1 and
φ1(ξ) ≡ 0 for |ξ | ≥ 1.1. By using parity of φ, we have

̂
b0T

(2)
λl b0(k) = i

4
λ

∑

k′∈Z2

(φ(λ−1k′)− φ(λ−1(k′ − k)))b̂0(k
′)b̂0(k − k′)

= − ik

4
·

∑

k′∈Z2

∫ 1

0
(∇φ)(λ−1(k′ − θk))dθφ1(μ

−1k′)

4 Here F−1 denotes the inverse Fourier transform on R
2 × R

2. See (3.6).
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φ1(μ
−1(k − k′))b̂0(k′)b̂0(k − k′).

Note that (∂�φ)( k
′−θk
λ

)φ1(
k′
μ

)φ1(
k−k′

μ
) = λ−2

∑
1≤i, j≤2 h̃�i j (

k′−θk
λ

)(k′ − θk)i (k′ −
θk) jφ1(

k′
μ

)φ1(
k−k′

μ
) where h̃�i j ∈ C∞c (R2). The result then follows from (3.6) by

checking the L1 bound of the kernel. The case for T (1)
λl is similar. ��

Proof of Proposition 3.1. Rewrite (2.3) as

∇qn+1 ◦≈ � fn+1∇⊥ fn+1 + ∇qn︸ ︷︷ ︸
Mismatch error

+� fn+1∇⊥ f≤n + � f≤n∇⊥ fn+1
︸ ︷︷ ︸

Transport error

−ν∇�γ−1 fn+1︸ ︷︷ ︸
Dissipation error

= : ∇qM + ∇qT + ∇qD .

Frequency localization of qn+1 can be easily deduced from qM , qT , and qD which are
defined below. For convenience, we shall write a j,n+1 as a j in the computation below.
Mismatch error. By (2.6), we can further decompose the mismatch error as

∇qM ◦≈ ( main + ∇qn) + non-oscillatory error + oscillatory error

◦≈ ∇qM1 + ∇qM2 + ∇qM3.

Wefirst estimate qM1. To ease the notationwewrite a
per
j = 2

√
rn

5λn+1

√
C0 +Ro

j
qn
rn

and

a j = P≤μn+1a
per
j . By using a fattened frequency projection P̃≤μn+1 which is frequency

localized to {|k| ≤ 4μn+1} and noting that λn � μn+1, we have

− 1

4
· (5λn+1) ·

2∑

j=1
l⊥j (l j · ∇)a2j + ∇qn − ∇qM1

= −5

4
λn+1

2∑

j=1
l⊥j (l j · ∇)P̃≤μn+1((P≤μn+1a

per
j )2) + ∇qn −∇qM1

= −5

4
λn+1

2∑

j=1
l⊥j (l j · ∇)P̃≤μn+1

(

−2aperj P>μn+1a
per
j + (P>μn+1a

per
j )2

)

−∇qM1
◦≈ 0.

Thus we can solve qM1 ∈ C∞0 (T2) as

qM1 = −5

4
λn+1

2∑

j=1
�−1∇

·
(

l⊥j (l j · ∇)P̃≤μn+1

(

−2aperj P>μn+1a
per
j + (P>μn+1a

per
j )2

))

. (3.7)

Note that qM1 is frequency localized to {|k| ≤ 4μn+1}. By Lemma 3.2, we obtain

‖qM1‖X � logμn+1 · λn+1
2∑

j=1
‖aperj ‖∞‖P>μn+1a

per
j ‖∞ (3.8)
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� (logμn+1)λn+1‖a j‖∞ · 1

μ2
n+1

‖�aperj ‖∞ (3.9)

� logμn+1 · (μ−1n+1λn)
2rn . (3.10)

Note that both non-oscillatory error and oscillatory error have zero means, so we
define

qM2 = �−1∇ · non-oscillatory error , qM3 = �−1∇ · oscillatory error

in C∞0 (T2). To estimate qM2, we claim that

‖�−1∇ · ((T (1)
n+1, j a j )∇⊥a j )‖X + ‖�−1∇ · (5λn+1(T (2)

n+1, j a j )a j l
⊥
j )‖X � rnλ

−2
n+1μ

2
n+1 logμn+1.

Indeed, by Lemma 3.4, (T (2)
n+1, j a j )a j can be written as a divergence form and hence we

can apply Lemma 3.2 to get

‖�−1∇ · (5λn+1(T (2)
n+1, j a j )a j l

⊥
j )‖X � (logμn+1)λn+1

(
μn+1

λn+1

)2 rn
λn+1

� rn

(
μn+1

λn+1

)2
logμn+1.

The other term can be estimated similarly. Then, it leads to

‖qM2‖X � rnλ
−2
n+1μ

2
n+1 logμn+1. (3.11)

Next we estimate qM3. Denote T
(i)
n+1, j = T (i)

5λn+1l j
for i, j = 1, 2. By Lemma 3.3, we have

‖T (1)
n+1, j a j‖∞ � λ−1n+1μ

2
n+1

√
rn

λn+1
, ‖T (2)

n+1, j a j‖∞ � λ−2n+1μ
3
n+1

√
rn

λn+1
. (3.12)

Since all terms in (oscillatory error) have the frequency localized to ∼ λn+1 provided
that 48λn ≤ λn+1, the estimate for qM3 easily follows from (3.12):

‖�−1∇ · (osc1)‖X �
2∑

j=1
‖�−1∇ · (l j · ∇a j + T (2)

n+1, j a j )(λn+1a j l
⊥
j cos(10λn+1l j · x)

+ ∇⊥a j sin(10λn+1l j · x))‖X

�
2∑

j=1
λn+1‖�−1∇ ·

(
a j l j · ∇a j l

⊥
j cos(10λn+1l j · x)

)
‖X

+ ‖�−1∇ ·
(
∇a j · l j∇⊥a j sin(10λn+1l j · x)

)
‖X

+ λn+1‖�−1∇ ·
(
a j T

(2)
n+1, j a j l

⊥
j cos(10λn+1l j · x)

)
‖X

+ ‖�−1∇ ·
(
T (2)
n+1, j a j∇⊥a j sin(10λn+1l j · x)

)
‖X

�
2∑

j=1
‖∇a j‖∞‖a j‖∞ + λ−1n+1‖∇a j‖∞‖∇⊥a j‖∞

+ ‖T (2)
n+1, j a j‖∞‖a j‖∞ + λ−1n+1‖T (2)

n+1, j a j‖∞‖∇⊥a j‖∞
�

(
λn

λn+1

)

rn .
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Here we use the frequency localization assumption of qn (note that qn is frequency

localized to ≤ 12λn) to derive ‖∇a j‖∞ � λn

√
rn

λn+1
. Similarly, we obtain

‖�−1∇ · (osc2)‖X �
2∑

j=1
‖T (1)

n+1, j a j‖∞(‖a j‖∞ + λ−1n+1‖∇⊥a j‖∞) �
(

λn

λn+1

)

rn .

The estimates for (osc3)–(osc6) are similar (using 2/
√
5 ≤ |l1 ± l2| ≤ 4/

√
5) and

therefore

‖qM3‖X �
(

λn

λn+1

)

rn . (3.13)

Combining (3.8), (3.11), and (3.13) and using b > 1, β < 1, we can find �M =
�M (β, b) such that for any λ0 ≥ �M , we get qM = qM1 + qM2 + qM3 ∈ C∞0 (T2)

satisfying (see also Appendix 5)

‖qM‖X ≤ 1

3
rn+1.

Transport error. Define

qT = �−1∇ · (� fn+1∇⊥ f≤n + � f≤n∇⊥ fn+1) ∈ C∞0 (T2).

Since� fn+1∇⊥ f≤n +� f≤n∇⊥ fn+1 is frequency-localized to∼ λn+1, using ‖ f≤n‖Cα ≤
100, we get

‖qT ‖X � ‖ fn+1‖∞(‖∇⊥ f≤n‖∞ + ‖� f≤n‖∞) ≤ Cαλ1−α
n

√
rn

λn+1
≤ 1

3
rn+1

for some constant Cα > 0. Note that the last inequality amounts to requiring

λ
1−α− 1

2β− 1
2 b+bβ

n � 1. (3.14)

With the choice of α = 1
2 + β

2b − (b − 1)3, we have

1− α − 1

2
β − 1

2
b + bβ = 1

2
(b − 1)(3β − 1)− (b − 1)2

β

2b
+ (b − 1)3 =: c∗ < 0.

Indeed, since β < 1
3 , we have c∗ < 0 for b = 1+. Then we find �T = �T (β, b) so that

�
c∗
T � 1.

Dissipation error. We define qD = −ν�γ−1 fn+1 ∈ C∞0 (T2) which satisfies

‖qD‖X ≤ C2λ
γ−1
n+1 ‖ fn+1‖∞ ≤ 5C2λ

γ−1
n+1

√
rn

λn+1
≤ 1

3
rn+1,

for some C2 = C2(ν, γ ) > 0. Since β < 3 − 2γ , we can find sufficiently small
b0 = b0(ν, γ, β) such that for any 1 < b < b0 + 1 there exists �D = �D(ν, γ, β, b)
which leads the last inequality for any λ0 ≥ �D .

Collecting the estimates, we obtain ‖qn+1‖X ≤ rn+1 if λ0 > �0 = max(�M ,�T ,

�D). ��
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4. Proof of Theorem 1.2

Proof of Theorem 1.2. With no loss we take C0 = 2 in Proposition 2.3. Fix ν ≥ 0,
0 < γ < 3

2 and choose 0 < β < min
( 1
3 , 3− 2γ

)
to satisfy (1 + β)/2 > α∗. We

then choose b − 1 ∈ (0, b0) so that α = 1
2 + β

2b − (b − 1)3 ≥ α∗, where b0 is
defined in Proposition 3.1. Lastly, choose λ0 as in Proposition 3.1. Set parameters as

in (1.4). If necessary, we adjust λ0 to have
∑∞

m=0 λ
α− 1

2− β
2b

m ≤ 1. Take the base step
( f≤0, q0) = (0, 0). At nth-step, assume that ( f≤n, qn) ∈ C∞0 (T2)× C∞0 (T2) satisfies

• ( f≤n, qn) solves (2.1).
• supp(̂ f≤n) ⊂ {|k| ≤ 6λn}, supp(q̂n) ⊂ {|k| ≤ 12λn} and ‖qn‖X ≤ rn ,

‖ f≤n‖Cα(T2) ≤ 50
n∑

m=1
λα
m

√
rm−1
λm
≤ 100

n−1∑

m=0
λ

α− 1
2− β

2b
m+1 ≤ 100.

Then by Proposition 3.1 and (2.10), at (n + 1)thstep, we find fn+1 and qn+1 ∈ C∞0 (T2)

satisfying

• ( fn+1, qn+1) solves (2.3).

• supp( f̂≤n+1) ⊂ {|k| ≤ 6λn+1}, ‖ fn+1‖Cα(T2) ≤ 50λα
n+1

√
rn

λn+1
, supp(̂qn+1) ⊂ {|k| ≤

12λn+1}, and ‖qn+1‖X ≤ rn+1.

Thus the induction step can be closed and it remains to show that f≤n converges to the
desired weak solution. We first check its regularity. Clearly

‖ f≤n′ − f≤n‖Cα �
n′−1∑

m=n
λ

α− 1
2− β

2b
m+1 , ∀ n′ ≥ n.

Thus f≤n → f ∈ Cα(T2)⊂ Cα∗(T2). Now denote θn = � f≤n and θ = � f . Clearly

〈θn�−1∇⊥θn − ν�γ−2∇θn − ∇qn,∇ψ〉 = 0, ∀ψ ∈ C∞(T2).

We then rewrite the above as

1

2
〈�− 1

2 θn,�
1
2 [R⊥,∇ψ]θn〉 + ν〈�− 1

2 θn,�
γ+ 1

2 ψ〉 + 〈qn,�ψ〉 = 0, ∀ψ ∈ C∞(T2).

Since �− 1
2 θn → �− 1

2 θ strongly in L∞, Proposition 5.1 implies that θ solves (SQG). ��
Finally we remark that our solution θ = � f has an almost explicit form. By using

(2.10), we have

f =
∞∑

n=0

2∑

j=1
2

√
rn

5λn+1

(

P≤μn+1

√

C0 + Ro
j
qn
rn

)

cos(5λn+1l j · x).

The leading term is an almost explicit Fourier series (one can take C0 large) and thus
our solution is nontrivial.
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5. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 based on the following proposition.

Proposition 5.1. Let R = R j , j = 1, 2. Assume φ ∈ H3 and θ ∈ Ḣ− 1
2 (θ = 0). Then

we have

‖[R, φ]θ‖
Ḣ

1
2

� ‖φ‖Ḣ3‖θ‖
Ḣ−

1
2
.

Proof. Denote m(k) = k1|k| . It suffices to show that

‖
∑

k′ �=0,k
|k| 12 (m(k)− m(k′))φ̂(k − k′)θ̂(k′)‖l2k � ‖|k|3φ̂(k)‖l2k ‖|k|

− 1
2 θ̂ (k)‖l2k . (5.1)

If |k′| � |k − k′|, then |k| � |k − k′|, and
LHS of(5.1) � ‖

∑

k′ �=0,k
|k − k′||φ̂(k − k′)| · |k′|− 1

2 |θ̂ (k′)|‖l2k � RHS of(5.1).

If |k − k′| � |k|, then |k| ∼ |k′|, and it suffices to use |m(k)− m(k′)| � |k − k′|(|k′| +
|k|)−1. ��
Proof of Theorem 1.4. The point is to use the weak formulation (below 〈, 〉 denotes
L2-inner product in (t, x), and ψ is a time-dependent test function)

〈∂tθn, ψ〉 + 1

2
〈�− 1

2 θn,�
1
2 [R⊥,∇ψ]θn〉 + ν〈�− 1

2 θn,�
γ+ 1

2 ψ〉 = 0.

By using the above together with Proposition 5.1, we have5 ‖∂tθn‖L1
t Ḣ−8 � 1. Fix any

0 �= k ∈ Z
2. We have ‖∂t θ̂n(k, t)‖L1

t
� |k|8 and ‖θ̂n(k, t)‖L2

t
� |k|−s . By further using

a diagonal argument, we obtain along a subsequence

‖θ̂nl (k, t)− f̂ (k, t)‖L2
t
→ 0 for any fixed k. (5.2)

Using supl ‖θnl‖L2
t Ḣ s � 1 (note that s > − 1

2 ), we have for any integer J (below P>J

denotes frequency projection to the regime |k| ≥ 2J )

‖P>J (θnl − f )‖
L2
t Ḣ
− 1
2

� 2−J (s+ 1
2 )‖θnl − f ‖L2

t Ḣ s (5.3)

� 2−J (s+ 1
2 ). (5.4)

By (5.2) and (5.4), one obtains the strong convergence θnl → f in L2
t Ḣ
− 1

2 . Since

‖� 1
2 [R⊥,∇ψ](θn − f )‖2 � ‖θn − f ‖

Ḣ−
1
2
, it follows that f is the desired weak

solution. ��
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Appendix A: Bookkeeping of Various Parameters

In this appendix we sketch how the choice of various parameters in (1.4) take effect on
various error terms and the regularity of the weak solution. Recall that (observe from
below logμn+1 ∼ log λn)

λn =
⌈
λb

n

0

⌉
, rn = λ−β

n , μn+1 = (λnλn+1)
1
2 , α = 1

2
+

β

2b
− (b − 1)3 >

1

2
.

Mismatch error rn
λn

λn+1
log λn � rn+1 ⇐⇒ λ

(b−1)(β−1)
n log λn � 1.

Transport error λ1−α
n

√
rn

λn+1
� rn+1 ⇐⇒ λ

1−α− 1
2β− 1

2 b+bβ
n � 1.

Dissipation error λ
γ−1
n+1

√
rn

λn+1
� rn+1 ⇐⇒ λ

γ− 3
2 +β− β

2b
n+1 � 1.

Cα-regularity λα
n+1

√
rn

λn+1
� 1 ⇐⇒ λ

α− 1
2− 1

2b β

n+1 � 1.

Now one can take α ≈ 1
2 +

β
2b to do a limiting computation. From the transport error we

obtain (the limiting condition)

1− α − 1

2
β − 1

2
b + bβ = 1− b

2b
(b − β(2b + 1))⇒ β <

1

3
.

From the dissipation error we obtain β
2 < 3

2 − γ .
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