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Abstract. We consider a parabolic sine-Gordon model with periodic boundary con-

ditions. We prove a fundamental maximum principle which gives a priori uniform

control of the solution. In the one-dimensional case we classify all bounded steady
states and exhibit some explicit solutions. For the numerical discretization we em-

ploy first order IMEX, and second order BDF2 discretization without any additional
stabilization term. We rigorously prove the energy stability of the numerical schemes

under nearly sharp and quite mild time step constraints. We demonstrate the striking

similarity of the parabolic sine-Gordon model with the standard Allen-Cahn equa-
tions with double well potentials.
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1. Introduction

In this work we are concerned with the following parabolic sine-Gordon equation:

{
∂tu = κ2∆u+ sinu, (t, x) ∈ (0,∞) × Ω,

u|t=0 = u0,
(1.1)
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where κ2 is the diffusion constant and Ω is either a periodic torus T = [−π, π] in 1D

or the torus T
2 = [−π, π] × [−π, π] in 2D. The unknown function u : Ω → R typically

represents the concentration difference in the phase field context. For smooth solutions,

the basic energy associated with (1.1) is

E(u) =

∫

Ω

(
κ2

2
|∇u|2 + cos u

)
dx. (1.2)

The fundamental energy conservation law takes the form

d

dt
E(u) +

∫

Ω
|∂tu|2dx = 0. (1.3)

It follows that

E
(
u(t)

)
≤ E

(
u(s)

)
∀ t ≥ s, (1.4)

which gives a priori control of the homogeneous Ḣ1-norm of the solution. Better es-

timates are also available. For example assuming u0 is bounded, then by using the

fact that the nonlinear term sinu is bounded by 1, one can show that the solution re-

mains bounded for all finite time. Bootstrapping from this then easily yields global

wellposedness and regularity of the solution. Somewhat akin to the Eq. (1.1) is the

following slightly more general model:

∂τv = κ2∆v + γ sin βv, (1.5)

where β > 0, γ > 0 are parameters, and we denote by τ the time variable. One can

rewrite (1.5) as
∂(βv)

∂(γβτ)
=

κ2

γβ
∆(βv) + sin(βv). (1.6)

Consequently a change of variable u = βv, t = γβτ transforms (1.5) into the standard

form (1.1).

The classical one dimensional sine-Gordon equation

∂ttφ− ∂xxφ = − sinφ (1.7)

dates back at least to Frenkel and Kontorova [8] who considered the motion of a slip

in an infinite chain of atoms lying on top of a given fixed chain of alike atoms. To study

the propagation of the slip they obtained a difference differential equations which was

approximated by the sine-Gordon equation (1.7). In the realm of nonlinear field theory,

the sine-Gordon equation

∂ttφ− ∂xxφ = −m2 sinφ (1.8)

arises as one of the simplest intrinsically nonlinear theories. The classical point-like

particle theories suffer divergence problems such as the well-known self-energy prob-

lem of electrodynamics. It was realized that (cf. the discussion on [1, pp. 260]) one
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must consider nonlinear field theory in order to predict both the existence and dynam-

ics of extended elementary particles. Instead of augmenting a linear theory with the

addition of a nonlinear term ad hoc, a more natural way is to postulate a field whose

target is a nonlinear manifold. In this context the simplest topologically nontrivial man-

ifold is the standard 1-sphere, i.e. the set of real numbers modulo 2π. The sine-Gordon

Lagrangian density is postulated as

LSG =
1

2

(
φ2
t − φ2

x − 2m2(1− cosφ)
)
. (1.9)

One should note that for small φ, we have 2m2(1 − cosφ) ≈ m2φ2, i.e. we can recover

the usual Klein-Gordon Lagrangian density

LKG =
1

2

(
φ2
t − φ2

x −m2φ2
)
. (1.10)

The significance of the term 2m2(1− cosφ) is that it is the simplest periodic function of

φ which coincides with the Klein-Gordon case in the low-amplitude limit. The period-

icity of the nonlinear term has the effect of restricting the range of φ to be the 1-sphere.

Already within the limits of one-dimensional classical field theory, the sine-Gordon

equation (1.8) gave a very good picture of the interaction of elementary particles and

the existence of bound states, and in particular it may lead to solutions with the colli-

sional properties of solitons [15, 17]. The sine-Gordon equation has also been studied

as a model in the theory of crystal dislocations, the motion of rigid pendular attached

to stretched wire, and splay waves in lipid membranes and magnetic flux on Josephson

line. We refer the interested readers to [1–3,6–8,11,14,16] and the references therein

for more extensive discussions.

Our parabolic sine-Gordon model (1.1) can be viewed as the parabolic version of

the usual wave-type sine-Gordon in the phase-field context. It naturally arises from the

gradient flow of the energy functional

ESG(u) =
∫

Ω

(
κ2

2
|∇u|2 + cos u

)
dx (1.11)

in L2(Ω). Note that if we consider the H−1-gradient flow of (1.11), then we obtain the

model

∂tu = ∆
(
−κ2∆u− sinu

)
, (1.12)

which is akin to the usual Cahn-Hilliard equation. The model (1.12) will be studied

elsewhere. As it turns out, the potential term FSG(u) = cos u looks qualitatively similar

to the usual double well potential Fst(u) = (u2 − 1)2/4 for |u| = O(1), cf. Fig. 1. For

this reason it is natural to speculate that there is some natural one-to-one correspon-

dence between solutions to the parabolic sine-Gordon equation (1.1) and the usual

Allen-Cahn equations. On the other hand, the parabolic sine-Gordon equation is quite

appealing for both analysis and simulation since its nonlinearity has bounded deriva-

tives of all orders. As a matter of fact, the potential FSG(u) = cos u is one of the handy
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Figure 1: Comparison of the double-well potentials F (u) between the sine-Gordon model and the Allen-Cahn
model with polynomial potential.

choices for testing and benchmarking algorithms in the computational phase field com-

munity. The purpose of this work is to initiate the study of (1.1) and establish a number

of basic facts for solutions to (1.1). More importantly we prove the fundamental mono-

tonicity laws for the solutions, characterize and classify one-dimensional steady states,

and analyze the stability of several prototypical numerical discretization schemes im-

plemented on this model. Remarkably due to the very benign nonlinear structure one

can prove optimal energy stability results without resorting to any L∞-maximum prin-

ciple. This feature is quite appealing and we expect future development of our analysis

on the model (1.12) under slightly more stringent time step constraints.

To put things into perspective, it is worthwhile mentioning that there is another

dissipative sine-Gordon model in the literature (cf. [18, Chapter IV.2])

∂ttu+ α∂tu−∆u+ sinu = 0, (t, x) ∈ (0,∞) × Ω, (1.13)

where α > 0. When α = 0, Eq. (1.13) reads

∂ttu−∆u+ sinu = 0.

In this hyperbolic situation, u ≡ 0 provides a stable solution and the general dynamics

is vastly different from (1.1). One can see [10] and the references therein for related

results.

The rest of this paper is organized as follows. In Section 2 we prove a fundamental

maximum principle of the parabolic sine-Gordon model in all dimensions. In Section 3

we classify all bounded steady state solutions in one dimension. In Section 4 we an-

alyze two numerical discretization schemes and prove optimal energy stability in all

dimensions. In Section 5 we carry out several numerical experiments showcasing the

striking similarity of the parabolic sine-Gordon model and the usual Allen-Cahn equa-

tion. In the last section we give concluding remarks.
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2. Maximum principle

In this section we prove a useful maximum principle for (1.1) on the torus T
d =

[−π, π]d for all dimensions d ≥ 1.

Theorem 2.1 (Global wellposedness and maximum principle). Let κ > 0 and consider

(1.1) on T
d = [−π, π]d, d ≥ 1. Suppose ‖u0‖∞ ≤ π. Then there exists a unique global

solution u to (1.1) which is smooth for all t > 0. Furthermore we have

sup
0≤t<∞

‖u(t, ·)‖∞ ≤ π. (2.1)

Proof. We begin by noting that since the nonlinear term sinu has uniformly bounded

derivatives of all orders, it is utterly standard to obtain the global wellposedness and

regularity of the solution to (1.1) and thus we focus on the proof of (2.1).

We first prove (2.1) under the assumption that ‖u0‖∞ < π. Since ‖u0‖∞ < π,

by using smoothing estimate we may assume with no loss that u0 is smooth and still

satisfy ‖u0‖∞ < π. Fix 0 < ε ≪ 1 which will be taken to tend to zero later and consider

v(t, x) = u(t, x)− π − ε. We claim the following:

sup
t≥0

max
x∈Td

v(t, x) ≤ 0. (2.2)

Assume the claim is not true, then we can find t∗ > 0 such that

max
x∈Td

v(t∗, x) = 0, (2.3)

max
x∈Td

v(t, x) > 0, t ∈ (t∗, t∗ + δ0), (2.4)

where δ0 > 0 is a sufficiently small constant. Assume v(t∗, x) takes its maximum at

some x∗ ∈ T
d. Note that u(t∗, x∗) = π + ε and ∆v(t∗, x∗) ≤ 0, we have

∂tv(t, x∗)
∣∣
t=t∗

≤ sin(π + ε) = − sin ε < 0. (2.5)

By continuity, we can find δ∗ > 0 sufficiently small such that if |t− t∗|+ |y − x∗| < 3δ∗,

then

∂tv(t, y) < −1

2
sin ε < 0. (2.6)

In particular, for |y − x∗| < δ∗ and |t− t∗| < δ∗, we have

v(t, y) ≤ 0. (2.7)

Now for t = t∗ and any x ∈ T
d such that v(t, x) < 0, we can find a neighborhood Nx

and δx > 0 such that for any t ∈ [t∗, t∗ + δx], y ∈ Nx,

v(t, y) < 0. (2.8)
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By a covering argument using (2.7) and (2.8) (if v(t∗, x) = 0 we use (2.7), and if

v(t∗, x) < 0 we use (2.8)), we obtain for t∗ ≤ t ≤ t∗ + δ1 and δ1 > 0 sufficiently small,

max
t∗≤t≤t∗+δ1

max
x∈Td

v(t, x) ≤ 0. (2.9)

This clearly contradicts (2.4) and thus the claim (2.2) holds.

By taking ε → 0, we obtain u(t, x) ≤ π for all x ∈ T
d and t ≥ 0. By working with

−u we obtain u(t, x) ≥ −π for all x ∈ T
d and t ≥ 0. The desired result then follows

easily.

Finally we show how to get (2.1) under the assumption that ‖u0‖∞ ≤ π. It suffices

for us to show for any finite T > 0,

sup
0≤t≤T

‖u(t, ·)‖∞ ≤ π. (2.10)

The trick is to use stability. For n ≥ 1, consider (1.1) with initial data u
(n)
0 = (1 −

2−n−1)u0 and denote the corresponding solution as u(n). Apparently we have

sup
0≤t≤T

∥∥u(n)(t, ·)
∥∥
∞

≤ π, ∀n ≥ 1. (2.11)

Observe that

u(t)− u(n)(t)

= eκ
2t∆

(
u0 − u

(n)
0

)
+

∫ t

0
eκ

2(t−s)∆
(
sinu(s)− sinu(n)(s)

)
ds. (2.12)

From this, one can extract the L∞-stability estimate of u− u(n). In particular, it is not

difficult to check that

sup
0≤t≤T

∥∥u(t, ·)− u(n)(t, ·)
∥∥
∞

→ 0, (2.13)

as n → ∞. Thus (2.10) follows.

3. Classification of the steady states in 1D

In this section we consider bounded steady states of the sine-Gordon equation,

κ2u′′ + sinu = 0, x ∈ R. (3.1)

Note that here we consider the whole real axis for generality. Functions on the torus

T = [−π, π] can be naturally identified as a periodic function on R.

Proposition 3.1 (Rigidity of the solution to (3.1)). The following hold.
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• Even reflection. Suppose κ > 0, and for some r0 > 0 we have

κ2u′′ + sinu = 0, ∀ − r0 < x < 0, (3.2)

where u ∈ C2((−r0, 0)) and we assume limx→0− u′(x) = 0. Define u(x) = u(−x)
for 0 < x < r0. Then it holds that u ∈ C∞((−r0, r0)) with u′(0) = 0 and solving

the same equation on the whole interval.

• Odd reflection. Suppose κ > 0, and for some r0 > 0 we have

κ2u′′ + sinu = 0, ∀ 0 < x < r0, (3.3)

where u ∈ C2((0, r0)) and we assume limx→0+ u(x) = 0. Define u(x) = −u(−x)
for −r0 < x < 0. Then it holds that u ∈ C∞((−r0, r0)) with u(0) = 0 and solving

the same equation on the whole interval.

Proof. We shall only prove the first case as the second case is similar. First it is not

difficult to see that u has bounded derivatives in [−r0/2, 0) which can be extended to 0
from the left. The extended u satisfies the equation on (−r0, 0) ∩ (0, r0). Furthermore

the equation also holds at x = 0 up to third order derivatives. Then we can bootstrap

the regularity of u by using the equation and conclude that u ∈ C∞.

It is easy to see that if u is a solution to (3.1), then for any integer m ∈ Z and

x0 ∈ R, u(· + x0) + 2mπ is still a solution to (3.1). Therefore with no loss we can

consider solutions u with |u(0)| ≤ π.
Multiplying (3.1) by u′, we derive

1

2
κ2(u′)2 = C + cosu, (3.4)

where C ≥ −1 is a constant. Concerning the solution of (3.1), we have the following

result.

Proposition 3.2. Let u be a bounded solution to (3.1) with |u(0)| ≤ π and C ≥ −1 be

the constant defined in (3.4), then the following hold.

(1) For C > 1, there does not exist any bounded solution.

(2) If C = −1, then u ≡ 0.

(3) If C = 1, then u = ±2 arcsin tanh
(
x
κ
+ c

)
for some constant c ∈ R or u ≡ ±π.

(4) If −1 < C < 1, then u is a periodic function and ‖u‖∞ < π.

Proof. We proceed in several steps.

(1) If C > 1, then u′ never changes its sign and it implies that u is either an

increasing or a decreasing function. In addition |u′| has a positive lower bound, it

implies that u is unbounded. Thus, there is no bounded solution for C > 1.
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(2) If C = −1, then

cos u− 1 =
1

2
κ2(u′)2 ≥ 0, ∀x ∈ R. (3.5)

Since |u(0)| ≤ π, it follows that u ≡ 0.

(3) In the case C = 1, it is easy to check that u ≡ π or −π is always a solution. On

the other hand when |u(0)| < π, we can explicitly solve (3.4) and get

u = ±2 arcsin tanh
(x
κ
+ c

)
,

where c is a constant.

(4) In the case C ∈ (−1, 1), note that arccos(−C) ∈ (0, π). By (3.4) and the

assumption that |u(0)| ≤ π, we have |u(0)| ≤ arccos(−C). We first discuss the case

|u(0)| < arccos(−C). In this case (3.4) simplifies to

u′ = ±
√
2

κ

√
C + cos u. (3.6)

Figure 2: Different bounded steady states of 1D sine-Gordon equation. Here the periodic solution corre-
sponds to κ = 0.5 and C = 0 in (3.4).
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With no loss we consider the case u′(0) > 0 and work with the ODE

u′ =

√
2

κ

√
C + cos u. (3.7)

It is not difficult to solve (3.7) on a maximal interval [x−, x+] such that −∞ < x− < 0 <
x+ < ∞, u′(x−) = u′(x+) = 0. Furthermore u′(x) > 0 for any x− < x < x+. Clearly

on the interval (x−, x+), u is a smooth solution to κ2u′′ + sinu = 0. By Proposition 3.1,

we can uniquely extend this solution (via repeated reflections) to the whole real axis.

The obtained solution is clearly periodic and satisfies ‖u‖∞ ≤ arccos(−C). The case

u′(0) < 0 is similar since we can work with −u and repeat the argument.

Finally we consider the case |u(0)| = arccos(−C). With no loss we consider u(0) =
arccos(−C). Clearly u′(0) = 0. By using u′′ = − 1

κ2 sinu, we get u′′(0) < 0. We can find

x0 < 0 sufficiently close to 0 such that u(x0) < arccos(−C). Starting from the initial

value u(x0), we can then work with the ODE

u′ =

√
2

κ

√
C + cos u, (3.8)

and solve it on a maximal interval [r−, 0], where −∞ < r− < 0 and u′(r−) = u′(0) = 0.

We then apply Proposition 3.1 to obtain the periodic solution on the real axis.

4. Numerical schemes

In this section we establish the energy dissipation for the first-order IMEX scheme

and second-order BDF2 scheme. The results of this section are valid on the torus Td =
[−π, π]d for all dimensions d ≥ 1.

4.1. First-order IMEX scheme

We consider the following first order implicit-explicit (IMEX) scheme:

un+1 − un

τ
= κ2∆un+1 + sin(un), (4.1)

where τ > 0 denotes the time step, and un : Ω = T
d → R corresponds to the numerical

solution computed at step n. One can rewrite (4.1) as

(
1− τκ2∆

)
un+1 = un + τ sin(un) (4.2)

or

un+1 =
(
1− τκ2∆

)−1 (
un + τ sin(un)

)
. (4.3)

The solvability is not an issue once the initial data u0 is given. In more practical

numerical computations one can employ spectral methods to compute the operator

(1− τκ2∆)−1 very efficiently.
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Theorem 4.1 (Discrete maximum principle). Consider the scheme (4.1). Assume ‖u0‖∞
≤ π. If 0 < τ ≤ 1, then ‖un‖∞ ≤ π for all n ≥ 1.

Proof. Consider the function fτ (z) = z + τ sin(z). It is easy to see that if 0 < τ ≤ 1,

f ′
τ (z) ≥ 0 for all z ∈ R. Thus, max|z|≤π |fτ (z)| ≤ π. The desired result then follows

from (4.3) together with a maximum principle for the operator (1 − τκ2∆)−1, i.e.,

‖(1− τκ2∆)−1‖L∞→L∞ ≤ 1, cf. [12,13].

Concerning the energy dissipation, we have the following result. Note that the time

step constraint is 0 < τ ≤ 2, which is wider than the one given by Theorem 4.1. This is

because we do not need to use the maximum principle in the proof.

Theorem 4.2 (Energy dissipation). If 0 < τ ≤ 2, then the following energy dissipation

law holds for the scheme (4.1):

E(un+1) ≤ E(un), ∀n ≥ 0, (4.4)

where

E(un) =
κ2

2
‖∇un‖2 +

∫

Ω
cos(un)dx. (4.5)

Here ‖ · ‖ = ‖ · ‖2.

Proof. Multiplying (4.1) by un+1 − un and integrating over Ω, we have

1

τ
‖un+1 − un‖2

= −κ2
〈
∇un+1,∇un+1 −∇un

〉
Ω
+

〈
sin(un)(un+1 − un), 1

〉
Ω
, (4.6)

where 〈·, ·〉Ω denotes the L2 inner product on Ω, i.e.

〈f, g〉Ω =

∫

Ω
f(x)g(x)dx for f, g : Ω → R. (4.7)

It follows that

κ2

2
‖∇un+1‖2 +

∫

Ω
cos(un+1)dx− κ2

2
‖∇un‖2 −

∫

Ω
cos(un)dx

≤ −
〈
1

τ
+

1

2
cos(ξn), (un+1 − un)2

〉

Ω

, (4.8)

where ξn is some function between un and un+1. Obviously, when 0 < τ ≤ 2, the

right-hand side of the above inequality (4.8) is always non-positive.
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4.2. Second-order BDF2 scheme

We consider the following BDF2 scheme of the sine-Gordon equation:

3un+1 − 4un + un−1

2τ
= κ2∆un+1 + 2 sin(un)− sin(un−1), n ≥ 1. (4.9)

To kick start the scheme one can compute u1 using a first order scheme such as (4.1).

We have the following modified energy dissipation law for this second-order scheme.

Theorem 4.3 (Energy dissipation). If 0 < τ ≤ 1
2 , then the energy dissipation law holds

for scheme (4.9)

Ẽ(un+1) ≤ Ẽ(un), ∀n ≥ 1, (4.10)

where

Ẽ(un) = E(un) +
1

4τ
‖un − un−1‖2

=
1

2
κ2‖∇un‖2 +

∫

Ω
cos(un)dx+

1

4τ
‖un − un−1‖2 (4.11)

is the modified energy.

Proof. We first observe that

3un+1 − 4un + un−1

2τ
=

un+1 − un

τ
+

un+1 − 2un + un−1

2τ
. (4.12)

Multiplying (4.9) by un+1 − un and integrating over Ω, we obtain

〈
3un+1 − 4un + un−1

2τ
, un+1 − un

〉

Ω

=
〈
κ2∆un+1 + 2 sin(un)− sin(un−1), un+1 − un

〉
Ω
. (4.13)

Denote δun = un − un−1. By using (4.12), we can rewrite the left-hand side of (4.13)

as

LHS =
1

τ
‖δun+1‖2 + 1

4τ

(
‖δun+1‖2 − ‖δun‖2 + ‖δun+1 − δun‖2

)
. (4.14)

Observe that

cos(un+1) = cos(un)− sin(un)δun+1 − 1

2
cos(ξn)(δun+1)2, (4.15)

where ξn is a function between un and un+1. By using (4.15), we rewrite the right-hand

side of (4.13) as

RHS ≤ κ2

2
‖∇un‖2 +

∫

Ω
cos(un)dx− κ2

2
‖∇un+1‖2 −

∫

Ω
cos(un+1)dx

− 1

2

〈
cos(ξn), (δun+1)2

〉
Ω
+

〈
sin(un)− sin(un−1), δun+1

〉
Ω
. (4.16)
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Note that

〈
sin(un)− sin(un−1), δun+1

〉
Ω

≤ ‖δun‖‖δun+1‖ ≤ 1

2
‖δun+1 − δun‖2 + 3

2
‖δun+1‖2. (4.17)

Collecting the estimates, we have

1

τ
‖δun+1‖2 + 1

4τ

(
‖δun+1‖2 − ‖δun‖2 + ‖δun+1 − δun‖2

)

≤ κ2

2
‖∇un‖2 +

∫

Ω
cos(un)dx− κ2

2
‖∇un+1‖2 −

∫

Ω
cos(un+1)dx

−
〈
1

2
cos ξn − 3

2
, (δun+1)2

〉
+

1

2
‖δun+1 − δun‖2. (4.18)

Thus we obtain

E(un+1)− E(un) +
1

4τ
‖δun+1‖2 − 1

4τ
‖δun‖2

≤ −
〈
1

τ
+

1

2
cos(ξn)− 3

2
, (δun+1)2

〉

Ω

−
(

1

4τ
− 1

2

)
‖δun+1 − δun‖2. (4.19)

When 0 < τ ≤ 1
2 , it is obvious that the right-hand side of (4.19) is non-positive so that

Ẽ(un+1) ≤ Ẽ(un) holds.

5. Numerical experiments

Example 5.1. Consider the 1D sine-Gordon equation

∂tu = κ2∂xxu+ sin(u) on T = [−π, π] (5.1)

with κ = 0.1 and u0(x) = π sin(x).

We adopt the first order IMEX scheme (4.1) to solve this 1D sine-Gordon equation.

For the spatial discretization, we use the pseudo-spectral method with the number

of Fourier modes N = 256. On the left-hand side of Fig. 3, we plot the numerical

solutions at T = 42 which are computed using time steps τ = 0.1, 2, 2.1 respectively.

The corresponding energy evolutions are depicted on the right-hand side of Fig. 3. It

can be observed that when τ = 0.1 and 2, the energy decays monotonically in time.

However, when τ = 2.1, the energy does not always decay. This indicates that the time

step restriction in Theorem 4.2 is optimal. Similarly, we also test the BDF2 scheme

(4.9) with different time steps τ = 0.1, 0.5, 1, 1.4. The numerical solutions and energy

evolutions are illustrated in Fig. 4. In particular, when τ = 1.4, the energy does not

always decay.
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Figure 3: Numerical solutions u(x, T ) and energy evolutions for the 1D sine-Gordon equation computed by
the IMEX scheme (4.1) with different time steps τ = 0.1, 2, 2.1, where T = 42.

Figure 4: Numerical solutions u(x, T ) and energy evolutions for the 1D sine-Gordon equation computed by
the BDF2 scheme (4.9) with different time steps τ = 0.1, 0.5, 1, 1.4, where T = 42.

We test the convergence rate with respect to time for both the IMEX scheme (4.1)

and the BDF2 scheme (4.9). First we take the time step τ = 10−4 and the number of

Fourier modes N = 512, to obtain an “exact” solution uex at time T = 10. Then, for

the IMEX scheme and BDF2 scheme respectively, we use different time steps τ = 1
10×2k

with k = 0, 1, . . . , 4, to obtain different numerical solutions at T = 10. The L2-errors

between these numerical solutions and the “exact” solution are reported in Table 1.

It can be observed that the convergence rates of the IMEX and BDF2 schemes are

approximately 1 and 2.
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Table 1: L2-errors of numerical solutions to Example 5.1 at time T = 10 computed by the IMEX scheme
(4.1) (top) and the BDF2 scheme (4.9) (bottom).

τ 1

10

1

20

1

40

1

80

1

160

L2-error 5.18× 10−5 2.77× 10−5 1.43× 10−5 7.27× 10−6 3.66× 10−6

IMEX’s rate – 0.90 0.95 0.98 0.99

τ 1

10

1

20

1

40

1

80

1

160

L2-error 9.23× 10−6 2.17× 10−6 5.29× 10−7 1.30× 10−7 3.24× 10−8

BDF2’s rate – 1.998 1.999 2.000 2.000

Example 5.2. Consider the 2D sine-Gordon equation

∂tu = κ2∆u+ sin(u) on T
2 = [−π, π]2 (5.2)

with κ = 0.2 and u0(x, y) = π sin(x) sin(y).

We compare the numerical solution of (5.2) with the standard Allen-Cahn equation

with polynomial potential

∂tu = κ2∆u+ u− u3 on T
2 = [−π, π]2. (5.3)

This Allen-Cahn equation is solved using the following BDF2 scheme:

3un+1 − 4un + un−1

2τ
= κ2∆un+1 + 2

(
un − (un)3

)
−

(
un−1 − (un−1)3

)
. (5.4)

For the spatial discretization, we use the pseudo-spectral method with the number of

Fourier modes Nx ×Ny = 256 × 256.

The computed solutions are illustrated in Fig. 5 and 6. It can be observed that both

models exhibit strikingly similar patterns. The corresponding energy evolutions are

presented in Fig. 7.

Remark 5.1. We mention that as a variation of the theme, one can replace the non-

linearity sin(u) in (5.2) by 1
π
sin(πu), so that the corresponding L∞ bound becomes

‖u‖∞ ≤ 1. This would be in some sense closer to the standard Allen-Cahn equation

since 1
π
sin(πu) ≈ u near u = 0.

6. Concluding remarks

In this work we introduced a parabolic sine-Gordon (PSG) model which is a special

phase field model with cosine-type potential. We proved a fundamental maximum

principle for the parabolic sine-Gordon model with periodic boundary conditions in all

dimensions. In the one-dimensional case we classified all bounded steady states and

exhibit some explicit solutions. We considered two types of numerical discretization for

PSG: one is first order IMEX, and the other is BDF2 IMEX. For both schemes we do not
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Figure 5: Example 5.2: Dynamics of 2D sine-Gordon equation (5.2) using the second-order BDF2 scheme
(4.9) where κ = 0.2, u0 = π sin(x) sin(y), τ = 0.01, Nx = Ny = 256.

use any additional stabilization term. Without appealing to the maximum principle,

we rigorously prove the energy stability of the numerical schemes under nearly sharp

and quite mild time step constraints. By several numerical examples we demonstrated

the striking similarity of the PSG model with the standard Allen-Cahn equations with

double well potentials. Due to its inherent benign nonlinear structure, it appears that

the PSG model is particularly amenable to L∞-analysis. In prospect we hope the PSG

model will have a ubiquitous presence in phase field simulations.
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Figure 6: Example 5.2: Dynamics of 2D Allen-Cahn equation (5.3) using the second-order BDF2 scheme
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Figure 7: Energy evolutions for the 2D sine-Gordon simulation in Fig. 5 (left) and the 2D Allen-Cahn
simulation in Fig. 6 (right), where κ = 0.2, τ = 0.01, Nx = Ny = 256. Here u0 = π sin(x) sin(y) for
sine-Gordon and u0 = sin(x) sin(y) for Allen-Cahn. The BDF2 pseudo-spectral schemes (4.9) and (5.4)
are used respectively.
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