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Abstract We consider a square distance matrix which arises from a preconditioned Jaco-
bian matrix for the numerical computation of the Cahn–Hilliard problem. We prove strict
negativity of all but one associated eigenvalues. This solves a conjecture in Christieb et al.
(J Comput Phys 257:193–215, 2014).
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1 Introduction

In [2], Christlieb et al. developed a novel computational framework for phase field models
from energy gradient flows. For the Cahn–Hilliard model, a key step in the asymptotic results
obtained therein is concerned with the solvability of a preconditioned Jacobian matrix. More
specifically, the authors formulated the following conjecture (see [2, p. 204]):

Conjecture 1 If {xi }, i = 1, 2, . . . , M are distinct points in [0,1) and the entries bi j of the
M×M matrix B are given by

bi j = di j − d2i j ,
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where di j are the distances between points xi and x j , taken either as absolute value or the
periodic interval, then the matrix PBP has M−1 strictly negative eigenvalues. Here P is
the projection onto the subspace orthogonal to constant vectors.

Note that BT = B, PT = P and hence PBP are symmetric matrices. The purpose of this
note is to prove Conjecture 1. For more background on the numerical analysis of phase field
type models, we refer to the introduction of [2]. For more recent developments in this area,
see [4,5] and the references therein. See also [1] for additional implications of Conjecture 1
for many particle systems interacting with inter-particle energies given by bi j . One should
note that in the zero-temperature statistical physics of n-rigid particles, a closely related issue
is whether or not a three body (i.e. the third virial expansion) term is require to described an
ordered state, or whether two body terms are sufficient. For instance take particle coordinates
x j and θ j for 1 ≤ j ≤ n, the probability density for a dilute gas can be expanded out with a
virial expansion in the spirit of Onsager:

P(x1, θ1, x2, θ2, . . . , xn, θn) = Const ·
∑

i �= j

H(xi , θi , x j , θ j )

where H = 1 if the particles i , j overlap and 0 if they do not. Looking at the marginal
distribution obtained by integrating over the spatial coordinates xi , x j etc. one has

P(θ1, θ2, . . . , θn) ∝
∑

i, j

W (θi − θ j ),

where W = excluded volume. These angles 0 ≤ θ j < 2π , which means the periodic case is
practically very important and not just a theoretical artifact on numerical solvers that require
a finite domain. Maximizing the probability, in the large N limit will likely have a trivial
solution where the theta’s are uniformly distributed on the circle. If the generalized distance
matrix obtained by W satisfies the spectral gap condition in the paper then it is likely that
three body terms are required. One of the first models for rigid rods where the generalized
distance function would be periodic can be found in [6] (Onsager used W (θ) ∝ | sin(θ)|).

2 Main Theorem

To prove Conjecture 1, we first prove the following main theorem.

Theorem 2.1 Let M ≥ 2 and {xi }Mi=1 be distinct points in [0,1). Suppose f: R → R is a
1-periodic, symmetric function f (−x) = f (x), with Fourier expansion

f (z) =
∑

k∈Z
fke

2πki z

such that
∑

k∈Z | fk | < ∞ and

fk < 0, ∀ 0 �= k ∈ Z.

Then for any ξ = (ξ1, ξ2, . . . , ξM ) ∈ R
M with

∑M
i=1 ξi = 0 and ξ �= (0, 0, . . . , 0), we have

ξ T Bξ ≤ −αB |ξ |2 < 0,

where the matrix B is given by Bi j = f (xi − x j ) and αB > 0 is a constant depending on
(M, {xi }Mi=1, { fk}M−1

k=1 ).
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Remark 2.2 It follows easily that the matrix PBP has eigenvalue 0 with eigenvector
(1, . . . , 1), and other M − 1 eigenvalues are strictly negative.

Remark 2.3 There exists a plethora of 1-periodic functions whose Fourier coefficients (for
k �= 0) are explicitly given and have definite sign. For example, the nth Bernoulli polynomial
has the expansion

Bn(z) = − n!
(2π i)n

∑

k �=0

e2πki z

kn
.

In particular for n = 2, 4 and z ∈ [0, 1]:

B2(z) = z2 − z + 1

6
,

B4(z) = z4 − 2z3 + z2 − 1

30
.

The Bernoulli polynomials play an important role in the discrepancy theory of integration
lattices for quasi Monte Carlo methods (cf. [3] and the references therein). It is a remarkable
fact that the function f (z) = z − z2 (which is essentially the same as −B2(z) since the
constant 1

6 does not matter in view of mean-zero conditions) also show up in the square
distance matrix in Conjecture 1.

Proof of Theorem 2.1. For any non-zero vector ξ = (ξ1, ξ2, . . . , ξM ) with
∑M

i=1 ξi = 0, we
compute

ξ T Bξ =
M∑

i, j=1

ξiξ j f (xi − x j )

=
M∑

i, j=1

∑

k∈Z
fkξiξ j e

2π ik(xi−x j )

=
∑

k∈Z
fk

∣∣∣∣
M∑

i=1

ξi e
2π ikxi

∣∣∣∣
2

.

Denote ωi = e2π i xi and note that1 ωi �= ω j if i �= j . Consider the matrix equation:
⎛

⎜⎜⎜⎝

1 . . . 1
ω1 . . . ωM
...

...
...

ωM−1
1 . . . ωM−1

M

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ξ1
ξ2
...

ξM

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

α1

α2
...

αM

⎞

⎟⎟⎟⎠ .

Note that the coefficient matrix � = (ωi−1
j )1≤i, j≤M is the usual Vandermonde matrix

which is nonsingular thanks to the fact that (ωi )1≤i≤M are distinct (Recall det(�) =∏
1≤i< j≤M (ω j − ωi )). It then follows that

∑

1≤k≤M−1

(− fk)

∣∣∣∣
M∑

j=1

ξ j e
2π ikx j

∣∣∣∣
2

≥ c1 · min
1≤k≤M−1

(− fk) ·
M∑

j=1

ξ2j ,

1 Here we used the fact that xi ∈ [0, 1). In particular we do not allow the situation xi0 = 0, x j0 = 1 for some
i0, j0.
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where c1 > 0 is a constant depending only on (M, {xi }Mi=1). Note that for k = 0,
∑M

i=1 ξi = 0
by assumption and the value of f0 does not affect the sum ξ T Bξ . The desired conclusion
then follows. 
�

In practice it is often desirable to have a criterion on the negative-definiteness of the
function f without explicitly computing Fourier coefficients. The following “Pólya”-type
proposition gives a sufficient condition which can already yield a proof of Conjecture 1. The
proof of Conjecture 1 in Sect. 3 is based on an explicit computation.

Proposition 2.4 Suppose f : R → R is 1-periodic, even and continuous. If f is concave
on the interval [0, 1], then

fk ≤ 0, ∀ 0 �= k ∈ Z,

where fk is the kth Fourier coefficient. If furthermore f ∈ C2([0, 1]) and for some α > 0,

min
0≤x≤1

f ′′(x) ≤ −α < 0, (2.1)

then there are constants c1, c2 > 0, such that
c2
k2

≤ − fk ≤ c1
k2

, ∀ 0 �= k ∈ Z. (2.2)

Remark 2.5 For Conjecture 1, note that f (x) = x − x2 for 0 ≤ x ≤ 1 which clearly satisfies
− f ′′ = 2. Many more explicit examples can be easily constructed without appealing to the
representation of Fourier series. It should also be clear from (2.2) that concavity is only a
sufficient (but not necessary) condition for non-positivity. One explicit counterexample is the
Bernoulli polynomial B4(z) mentioned before.

Proof of Proposition 2.4. Easy to check that fk = f−k . Since for k ≥ 1,

fk =
∫ 1

0
f (x) cos(2πkx)dx =

k−1∑

j=0

∫ j+1
k

j
k

f (x) cos(2πkx)dx

=
k−1∑

j=0

1

k

∫ 1

0
f

(
y + j

k

)
cos(2πy)dy,

it suffices to prove the case k = 1. Observe
∫ 1

0
f (x) cos(2πx)dx

=
∫ 1

4

0

(
f (x) + f (1 − x) − f

(
1

2
− x

)
− f

(
1

2
+ x

))
cos(2πx)dx .

To prove non-positivity, it then suffices to show for any 0 < x0 < 1
4 ,

f (x0) + f (1 − x0) − f

(
1

2
− x0

)
− f

(
1

2
+ x0

)
≤ 0.

Assume first f ∈ C2((0, 1)). Then by concavity f ′′ ≤ 0 on (0, 1). Easy to check that

f (1 − x0) − f

(
1

2
− x0

)
−

(
f

(
1

2
+ x0

)
− f (x0)

)

=
∫ 1

2

0

(
f ′

(
1

2
− x0 + θ

)
− f ′(x0 + θ)

)
dθ ≤ 0.
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In the general case (without C2 assumption), note that for fixed x0, we can suitably mollify
the function f to have a sequence fε → f with f ′′

ε ≤ 0 on ( x02 , 1 − x0
2 ). The argument is

obvious.
We now turn to (2.2). The upper bound follows from integration by parts. For the lower

bound, by using (2.1) and the preceding computation (applied to the function f ( y+ j
k )), we

have for k ≥ 1,

− fk ≥
k−1∑

j=0

1

k

∫ 1
4

0

α

k2
·
(
1

2
− 2x0

)
· 1
2
cos(2πx0)dx0

≥ const ·α
k2

.


�

3 Proof of Conjecture 1

First observe that to prove Conjecture 1, we only need to consider the action of B on the
subspace of vectors ξ = (ξ1, . . . , ξM )with the property

∑M
i=1 ξi = 0. It suffices to prove that

the matrix operator−B is strictly positive definite in this subspace. As stated in the statement
of Conjecture 1, we shall discuss two cases of the distance function.

Periodic Case: In this case we have f (z) = |z| − z2 for − 1
2 ≤ z ≤ 1

2 . It is not difficult to
compute for 0 �= k ∈ Z,

fk =
∫ 1

2

− 1
2

(|z| − z2
)
e2π ikz dz

= 2
∫ 1

2

0

(
z − z2

)
cos(2πkz) dz

= − 1

2π2k2
.

Thus by Theorem 2.1, we conclude that the matrix PBP has M − 1 strictly negative
eigenvalues.

Absolute Value Case: In this case we recall

bi j = di j − d2i j , di j = |xi − x j |.
Since xi �= x j ∈ [0, 1), we have |xi − x j | < 1. We can then regard

f (z) = |z| − z2, |z| < 1,

and view f as a 2-periodic function on R with the fundamental domain [−1, 1]. One can
then write down a Fourier expansion :

f (z) =
∑

k∈Z
fke

kπ i z, |z| < 1

and verify for k �= 0,

fk = − 1

π2k2

(
1 + (−1)k

)
.
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Note that fk < 0 for 0 �= k ∈ 2Z. We then have

ξ T Bξ =
∑

k∈2Z
fk

∣∣∣∣
M∑

i=1

ξi e
ikπxi

∣∣∣∣
2

=
∑

k̃∈Z
f2k̃

∣∣∣∣
M∑

i=1

ξi e
i2k̃πxi

∣∣∣∣.

The rest of the argument is then similar to the periodic case before. We omit the details.

4 Characterization of f

The following theorem provides a converse to Theorem 2.1. It is deeply connected with the
usual Bochner Theorem in probability theory. The novelty here is the semi-positivity on a
subspace of co-dimension one.

Theorem 4.1 Let f : R → R be 1-periodic, symmetric ( f (x) = f (−x)) and continuous.
Suppose for any M ≥ 2, any distinct points (x j )Mj=1 ∈ [0, 1), and any ξ = (ξ1, . . . , ξM ) ∈
R

M orthogonal to the constant vector, it holds that

M∑

i, j=1

f (xi − x j )ξiξ j ≥ 0.

Then for any 0 �= k ∈ Z, we have

fk ≥ 0,

where fk is the kth Fourier coefficient of f .

Remark 4.2 The function f above plays the role of the usual characteristic function φ in
standard Bochner type theorems. It should be noted that in “Bochner” case, one usually only
assumes the continuity of φ = φ(t) at t = 0, and deduce the continuity of φ on R from
positivity definiteness. It is certainly possible to relax our continuity assumption on f in
Theorem 4.1 along similar lines. However for the sake of simplicity we will not dwell on this
subtle issue here.

Remark 4.3 Anatural question worth further exploring is the characterization of f satisfying
semi-positivity on subspaces of finite or even infinite co-dimension. This is connected with
nonlinear optimization problems with constraints (cf. [1]). Yet another possibility is to inves-
tigate the spectrum of bilinear forms generated from “singular” two-body type interaction
potentials such as Lennard–Jones.

Lemma 4.4 Under the sameassumptions on f as inTheorem4.1,wehave for any0 �= k ∈ Z,
∫ 1

0

∫ 1

0
f (x − y) cos(2πkx) cos(2πky)dxdy ≥ 0,

∫ 1

0

∫ 1

0
f (x − y) sin(2πkx) sin(2πky)dxdy ≥ 0.
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Proof of Lemma 4.4. For each integer N > |k|, note that
N−1∑

l=0

e
2π ikl
N = 0.

One can then choose xl = l−1
N , ξl = cos(2πkxl) (resp. ξl = sin(2πkxl)), l = 1, . . . , N

and send N to infinity to get the result. Note that the continuity of f is used in the last
approximation step. 
�
Proof of Theorem 4.1. Easy to check that fk = f−k ∈ R. By using periodicity of f , we
write for 0 �= k ∈ Z:

fk =
∫ 1

0
f (x) cos(2πkx)dx

=
∫ 1

0
f (x − y) cos(2πk(x − y))dx

=
∫ 1

0

∫ 1

0
f (x − y) cos(2πk(x − y))dxdy

=
∫ 1

0

∫ 1

0
f (x − y)(cos(2πkx) cos(2πky) + sin(2πkx) sin(2πky))dxdy ≥ 0,

where in the last step we used Lemma 4.4. 
�
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