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Abstract
In this paper we are interested in the global well-posedness of the 3D Klein–Gordon–
Zakharov equations with small non-compactly supported initial data. We show the uniform
boundedness of the energy for the global solution without any compactness assumptions on
the initial data. The main novelty of our proof is to apply a modified Alinhac’s ghost weight
method together with a newly developed normal-form type estimate to remedy the lack of
the space-time scaling vector field; moreover, we give a clear description of the smallness
conditions on the initial data.

Mathematics Subject Classification 35L05 · 35L52

1 Introduction

Throughout this work we consider the following Klein–Gordon–Zakharov system (KGZ) in
R

+ × R
3:

⎧
⎪⎨

⎪⎩

�φ + φ = −nφ,

�n = �|φ|2,
(φ, ∂tφ, n, ∂t n)|t=0 = (φ0, φ1, n0, n1).

(KGZ)

Here � = ∂t t − � is the d’Alembertian and � is the usual Laplacian. The unknowns φ, n
take values in R

3 and R respectively; in fact they can be viewed as the Klein–Gordon and
wave components in the coupled (KGZ) system. The system above plays an important role
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in plasma physics where it describes the interaction between Langmuir waves and ion sound
waves in plasma via ion density fluctuation n and the electric field φ (cf. [7]).

In this paper, we are interested in the small data global well-posedness (GWP) of the
model problem (KGZ) and the long-term energy/pointwise asymptotic behavior of the global
solutions. Moreover, we carefully explore the scattering phenomenon of (KGZ). Our main
result is stated below:

Theorem 1.1 Consider the Klein–Gordon–Zakharov system as in (KGZ) and let K be an
integer no less than 8. We denote the energy space XK = H K+1 × H K × H K × H K−1,
where Hm are standard Sobolev spaces inR3. There exists small ε0 > 0 such that if ε ∈ (0, ε0)
and all initial data (φ0, φ1, n0, n1) satisfying the smallness condition below:

‖〈x〉K 〈∇〉K+1φ0‖2 + ‖〈x〉K 〈∇〉K φ1‖2 + ‖〈x〉k+6〈∇〉k+4φ0‖2

+ ‖〈x〉k+6〈∇〉k+3φ1‖2 +
K∑

j=0

‖〈x〉 j+1∇ j (∇n0, n1)‖2 < ε,
(1.1)

where k ≤ K − 4, then we can conclude the following:
(i). The Cauchy problem for the (KGZ) system admits a couple of global solutions

(φ, n) in time with the following uniform energy estimates:

‖∂�≤K φ‖2 + ‖�≤K φ‖2 + ‖�≤K n‖2 ≤ Cε (1.2)

for some constant C > 0 and � are the usual vector fields in the area of nonlinear waves
(see Sect.2 for definition).

(ii). Such global solutions fulfil the following optimal pointwise decay estimate:

|φ(t, x)| ≤ C1ε〈t〉− 3
2 , |n(t, x)| ≤ C2ε〈t〉−1〈t − |x |〉− 1

2 , (1.3)

for some positive constants C1, C2 > 0 and here 〈t〉 denotes the usual Japanese bracket that
we refer to Sect. 2 for the details.

(iii). The solution (φ, n) scatters to a free solution in XK as t → +∞: there exists
(φl0 , φl1 , nl0 , nl1) ∈ XK such that

lim
t→∞ ‖(φ, ∂tφ, n, ∂t n) − (φl , ∂tφl , nl , ∂t nl)‖XK = 0, (1.4)

where (φl , nl) is the linear homogeneous solution to the Klein–Gordon–Zakharov system
with initial data (φl0 , φl1 , nl0 , nl1).

Remark 1.1 There are a few global well-posedeness results for the Klein–Gordon–Zakharov
system with small initial data (cf. [11, 12, 23, 34]). In fact our main contribution to this
problem is to obtain uniform boundedness of the energy under very mild regularity assump-
tions on non-compactly supported initial data, namely K ≥ 8. More specifically, the original
work [34] required K ≥ 52 while the paper [11] previously improved the initial condition
to K ≥ 15. The novelty of ours is based on a newly developed normal-form type estimate
where we manage to handle the lack of the space-time scaling operator L0. We also provide
a proof of the linear scattering as t → +∞. Another new point of our work lies in giving
a clear description of the smallness conditions of non-compactly supported initial data (as
mentioned in Remark 1.2).

Remark 1.2 Weemphasize that the initial assumption (1.1) is different from those in nonlinear
waves.More specifically speaking, one can see from (1.1) that‖〈x〉K 〈∇〉K+1φ0‖2 < ε is quite
strong since even φ0 has to obey certain spatial decay properties: ‖〈x〉K φ0‖2 < ε. However
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such assumption is necessary. To see this, we observe that when performing energy estimates
with vector field �i0, one often times runs into the quantity ‖�4

i0φ|t=0‖2. Therefore it is
very natural to consider ‖〈x〉4∂4t φ|t=0‖2. Note that by applying the Klein–Gordon equation
of (KGZ) twice, one can arrive at

‖〈x〉4∂4t φ|t=0‖2 � ‖〈x〉4∂2t �φ|t=0‖2 + ‖〈x〉4∂2t φ|t=0‖2 + ‖〈x〉4∂2t (φn)|t=0‖2 (1.5)

� ‖〈x〉4�2φ|t=0‖2 + ‖〈x〉4�φ|t=0‖2 + ‖〈x〉4φ|t=0‖2 + nonlinear terms.
(1.6)

As shown above, we already need to control terms such as ‖〈x〉4φ|t=0‖2 = ‖〈x〉4φ0‖2. We
refer the readers to Proposition 2.1 for more details.

Remark 1.3 To see the decay estimate (1.3) is optimal, one can consider the homogeneous
linear wave and Klein–Gordon equation in R+ × R

3:

�u = 0, �v + v = 0, (1.7)

with sufficiently nice initial data. Then it follows from the fundamental solution formula that
the following estimates hold:

|u| � 〈t〉−1〈t − r〉− 1
2 , |v| � 〈t〉− 3

2 . (1.8)

We refer the readers to [21] for the wave equation and [16] for the Klein–Gordon equation.

Remark 1.4 It is known from the physics that for strong Langmuir turbulence, the Langmuir
phase velocity in the Klein–Gordon component is of great difference (usually about one
thousand times as large ) from the ion acoustic phase velocity in the wave equation (we refer
to [35] and [7]). In fact there is no scaling transformation can make them equal (while this is
possible for the original Zakharov equations), however, the model (KGZ) has aroused great
attention despite all this in the mathematical context due to its complex nonlinear structure.
We refer the readers to the historical review below. Models with more physical background
will be discussed in the future.

We recall some previous results in the literature that are closely related to the presenting
paper here.

Historical review

Nonlinear wave equations have been widely studied: consider the following second order
quasilinear wave equation in [0,∞) × R

d (d ≥ 2):

�u = gki j∂ku∂i j u, (1.9)

where gki j are constants and assume the initial data are sufficiently good. For the d ≥ 4 case,
GWP of (1.9) with small initial data was obtained (cf. [21]). When d = 3, GWP of (1.9)
was obtained in the pioneering work by Klainerman [24] and by Christodoulou [6] under
the null condition (gki jωkωiω j = 0, for ω0 = −1 and (ω1, ω2, ω3) ∈ S

2). However, on the
other hand, the solutions will admit finite time blow-up behaviors if the null conditions do
not hold (cf. [22]). When it comes to the case d = 2, Alinhac in the seminal work [1, 2]
shows that (1.9) admits a small data global smooth solution if the null conditions hold and on
the contrary the solution blows up in finite time without the null conditions. Moreover, in [1]
Alinhac showed that the highest norm of the solution grows at most polynomially in time by
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introducing the “ghost weight” method in order to tackle the slow decay. Many recent work
have successfully improved the previous results and we list several of relation here. In [4, 28]
the authors prove uniform boundedness of the highest norm of the solution by developing a
new normal-form type strategy in [5]; in [8] similar results were obtained by applying vector
fieldmethod on hyperboloids dating back toKlainerman andHörmander. Beyond these, there
are studies focusing on dealing with models where the Lorentz invariance is not available.
Such systems include non-relativistic wave systems with multiple wave speeds (cf. [40]) and
exterior domains (cf. [32]). In the subsequent work [4, 5, 28], the authors developed a new
systematic normal-form strategy and obtained GWP results of 2D quasilinear wave equations
without using the Lorentz boost operators�i0; in fact this strategy provides an idea to handle
models where space-time scaling operator L0 is not applicable.

The nonlinear Klein–Gordon equations have been roundly studied as well. In the break-
through work by Klainerman [25] and Shatah [38], the Klein–Gordon equations with
quadratic nonlinearities were shown to possess small global solutions. Motivated by the
large amount of inventive work on nonlinear wave equation and Klein–Gordon equation
mentioned above, the coupled wave and Klein–Gordon systems have arouse a great deal
of interest for decades. Among which, to our best knowledge, one of the very first result
on this area was obtained by Bachelot [3] on the Dirac–Klein–Gordon equations. Later in
[15] Georgiev proved GWP with strong null nonlinearities. Much more physical models
described by the coupled wave and Klein–Gordon systems have been studied since then. We
list a few models of interest here: the Klein–Gordon–Zakharov equations [11, 12, 23, 34],
the Maxwell–Klein–Gordon equations [26, 36, 37], the Einstein–Klein–Gordon equations
[27, 42], and Dirac–Klein–Gordon model [13].

From now on we review some results concerning the Klein–Gordon–Zakharov system
arising in plasma physics. We refer the readers to its physical background in [7, 45] and
briefly review some related models. Firstly we recall that the Euler-Maxwell equations are of
fundamental importance in the area of plasma physics. In particular the Zakharov equations
can be derived via the Euler equation for the electrons and ions coupled with the Maxwell
equation for the electric field (cf. [41]) and the Euler-Poisson system in R

+ × R
2 was

proved to admit global solutions by Li-Wu [29]. Secondly, on top of the small data GWP,
there are many other interesting results concerning different aspects of the Klein–Gordon–
Zakharov system or other closely related models. We hereby list a few of them: GWP of the
Klein–Gordon–Zakharov equations with multiple propagation speeds [35], the convergence
of the Klein–Gordon–Zakharov equations to the Schrödinger equation (also the Zakharov
system) as certain parameters go to+∞ (cf. [30]), the finite time blow-up for Klein–Gordon–
Zakharovwith rough data [39], the long-term pointwise decay of the small global solution (cf.
[10, 14, 17]), scattering (cf. [18–20]). Other related developments with different strategies
can be found in the papers [9, 12, 31, 33, 43, 44, 46].

The presenting paper was mainly motivated by [11], where the author proved that the
energy for the solution to the Klein–Gordon–Zakharov equations is uniformly bounded.
Meanwhile the initial data therein are required to have rather high regularity. To be more
precise, the initial condition (φ0, φ1, n0, n1) are supposed to have the following smallness
assumption with K ≥ 15 and ε being sufficiently small:

∑

I≤K+2

‖〈x〉I+2∇ I φ0‖ +
∑

I≤K+1

‖〈x〉I+3∇ I φ1‖

+
∑

I≤K+1

‖〈x〉I ∇ I n0‖ +
∑

I≤K

‖〈x〉I+1∇ I n1‖ ≤ ε. (1.10)
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Their proof relies on certain L∞−L∞ estimates of bothwave andKlein–Gordon components.
One of ourmodest goals is to replace the L∞−L∞ estimates on thewave component together
with the contraction mapping by the usual energy bootstrap method (armed with the newly-
developed normal form strategy in [4, 5, 28]) and eventually reduce the regularity assumption
of the initial data to around K = 8. We also expect to give a clear limn of the assumptions
on the initial data.

Before we sketch the strategy of our proof, we briefly demonstrate the main difficulties of
this model problem here. To begin with, as we mentioned earlier in Remark 1.3, the optimal
pointwise decay of (φ, n) one can expect (ignoring the constant) is (1.3):

|φ(t, x)| � 〈t〉− 3
2 , |n(t, x)| � 〈t〉−1〈t − |x |〉− 1

2 . (1.11)

Recall that the Klein–Gordon component

�φ + φ = −φn, (1.12)

then the usual energy estimate (by taking L2 inner product with ∂tφ on (1.12)) yields

d

dt
(‖∂φ‖22 + ‖φ‖22) = −2

∫

R3
φn · ∂tφ dx, (1.13)

where ∂ = (∂t ,∇) (see Sect. 2). It is then very natural to integrate in time and estimate the
following quantity:

∫ t

0
‖φn‖2(s) ds �

∫ t

0
‖φ‖∞‖n‖2 ds +

∫ t

0
‖n‖∞‖φ‖2 ds. (1.14)

Taking (1.11) into consideration and naively assuming the L2 norms are uniformly bounded
in time we arrive at:

∫ t

0
‖φn‖2 ds �

∫ t

0
(〈s〉−1 + 〈s〉− 3

2 ) ds � log(1 + t), (1.15)

which implies a blow-up of the energy as t goes to+∞. We observe that the decay 〈t −r〉− 1
2

has not been made fully use of while taking supremum in space; in fact one of the main
advantages of the aforementioned hyperbolic change of variable (vector field method on
hyperboloids) is that one can gain better control of the so-called conformal energy thanks
to the extra integrability in the hyperbolic time s = √

t2 − r2. To deal with such issue, we
follow the idea in [11], namely, apply the well-adapted Alinhac’s ghost weight method to
absorb extra 〈t − r〉 weight and hence generate better time decay. Secondly, the space-time
scaling is not invariant in theKGZ system therefore the L0 vector field is not applicable. In the
presenting paper, we develop a new normal-form strategy that is motivated by the sequential
work [4, 5] where the Lorentz invariance is not available. Lastly, another question is whether
one can relax the rather strict regularity assumption of the initial data. The assumption (1.10)
in [11] is due to certain L∞ − L∞ estimates on the wave equation (with some types of
Sobolev embedding). In this paper we employ a new energy bootstrap based on the normal-
form strategy so that no L∞ − L∞ estimates are needed for the wave component.

Outline of the proof

We hereby outline the key steps of our proof. To illustrate the idea, we fix any multi-index
α and denote 
 = �αφ and V = �αn with |α| = K (we suppress the dependence on α to
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ease the notation). We point out here � cannot be L0 due to the lack of space-time scaling
invariance; for the exact definition we refer to (2.1)–(2.2).

Step 1. Uniform boundedness of the energy. To start with, we make the following
a priori hypothesis:

|�≤kn| ≤ Cε〈t + r〉− 3
4 〈r − t〉− 1

2 , |�≤kφ| ≤ Cε〈t + r〉− 3
2 , (1.16)

where positive constant C is chosen later and k1 is around half size of K . Note that here the
assumption (1.16) is not optimal but is still sufficient to derive the uniform boundedness of
the energy. In fact, as will be addressed later, we will arrive at the optimal decay estimates in
time (1.3) as a by-product in the procedure of closing the bootstrap. We first apply Alinhac’s
ghost weight method by choosing p(r , t) = q(r − t) with q ′(s) scaling almost as 〈s〉−1. Let
us focus on the Klein–Gordon equation after applying �α:

�
 + 
 = −�α(φn). (1.17)

Then by taking the L2 inner product on (1.17) with ∂t
 · p(r , t) we can obtain that

1

2

d

dt

(
‖e

p
2 ∂
‖22 + ‖e

p
2 
‖22

)

+ 1

2

∫

epq ′(|T 
|2 + |
|2) ∼
∫

ep(
n + V φ)∂t
 dx + · · · , (1.18)

where “· · · ” denotes harmless terms which do not contribute to the main term. At first glance,
clearly we can control

∣
∣
∣
∣

∫

V φep∂t
 dx

∣
∣
∣
∣ � ‖V ‖2‖φ‖∞‖∂t
‖2 � 〈t〉− 3

2 ‖V ‖2‖∂t
‖2. (1.19)

The other term is handled by applying the usual Cauchy-Schwartz inequality as below:
∣
∣
∣
∣

∫


nep∂t
 dx

∣
∣
∣
∣ ≤ 1

4

∫

epq ′ · |
|2 dx + constant ·
∫

|∂
|2 · |n|2
q ′ ep dx, (1.20)

which leads to uniform boundedness of the energy in time (here |n|2
q ′ ∼ t− 3

2 by (1.16) ).
It remains to performenergy estimates on thewave equation aswell.As already occurred in

(1.19), in the original formulation of theKGZ equations, there appear wave unknowns such as
V = �αn without derivatives. This leads to difficulties because the undifferentiated quantities
cannot be controlled by the natural energy (‖∂�αn‖2). Our approach is to decompose n into
two parts: n = n0 + �n�, where

{
�n0 = 0,

(n0, ∂t n0)|t=0 = (n0, n1),
and

{
�n� = |φ|2,
(n�, ∂t n�)|t=0 = 0.

(1.21)

This kind of reformulation can be dated back to [23], where Katayama considered nonlinear
wave equations with nonlinearities of divergence form. One way to understand this decom-
position is to treat n� as a small perturbation of order O(ε2) (the “leading” term n0 is of
order O(ε)). We refer the readers to Remark 3.3.

Step 2. Optimal pointwise time decay and scattering. We then close the energy boot-
strap by showing the optimal pointwise decay (1.3) (better decay than (1.16)). The decay of
the Klein–Gordon component φ follows from a result by Georgiev in [16] (cf. Lemma 2.7).
In short words, it suffices for us to bound

∥
∥
∥〈t + | · |〉1+δ�≤k+4(φn)

∥
∥
∥
2
, (1.22)
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which is not hard due to the a priori assumption. We also note that Lemma 2.9 plays an
important role in dealing with terms such as

∥
∥
∥〈t + | · |〉1+δ(�≤k+4φ)n

∥
∥
∥
2
. (1.23)

In fact one can view Lemma 2.9 as an iteration process: the Klein–Gordon component can
gain better 〈t + r〉 decay as long as it can absorb more 〈t − r〉 weight.

We thenneed to obtain the optimal pointwise decay for thewave componentn = n0+�n�.
n0 is easier to handle since it is a free wave solution. On the other hand, to estimate the n�

part and remedy the lack of L0 vector fields, we employ L∞ and L2 estimates involving the
weight-factor 〈r − t〉. The key observation (see Lemma 2.5) is that one can control 〈t −r〉∂2u
as follows:

|〈t − r〉∂t t u| + |〈t − r〉∇∂t u| + |〈t − r〉∇2u| � |∂�≤1u| + 〈t + r〉|�u|. (1.24)

At the expense of the smallness of the energy, we obtain the optimal decay. These in turn lead
to the closure of the energy bootstrap with a careful choice of the constants. In the end, we
show the solution (φ, n) scatters as t → +∞. In fact this results from a semi-group method
and the uniform boundedness of the energy in time.

The rest of this work is organized as follows. In Sect. 2 we collect the notation and some
preliminaries together with useful lemmas. In Sect. 3 we show the uniform boundedness
of the energy. The optimal pointwise decay in time and scattering are included in Sect. 4,
therefore the proof of Theorem 1.1 is complete. We leave the analysis on the assumption of
the initial data in the Appendix.

2 Preliminaries and notation

Notation

We shall use the Japanese bracket notation: 〈x〉 = √
1 + |x |2, for x ∈ R

3.We denote ∂0 = ∂t ,
∂i = ∂xi , i = 1, 2, 3 and

∂ = (∂i )
3
i=0, �i j = xi∂ j − x j∂i , 1 ≤ i < j ≤ 3; �i0 = t∂i + xi∂t , 1 ≤ i ≤ 3; � = r∂t + t∂r ;

� = (�i )
10
i=1, where �1 = ∂t , �2 = ∂1, �3 = ∂2, �4 = ∂3, �5 = �10, �6 = �20, �7 = �30,

(2.1)

�8 = �12, �9 = �13, �10 = �23; (2.2)

�α = �
α1
1 �

α2
2 · · · �α10

10 , α = (α1, · · · , α10) is a multi-index;
�̃ = (�̃i )

11
i=1 = (L0, �), L0 = t∂t + r∂r , r = |x |; (2.3)

�̃β = �
β1
1 �

β2
2 · · · �β11

11 , β = (β1, · · · , β11)is a multi-index;
Ti = ωi∂t + ∂i , ω0 = −1, ωi = xi/r , i = 1, 2, 3. (2.4)

Note that T0 = 0. For simplicity of notation, we define for any integer k ≥ 1,�k = (�α)|α|=k ,
�≤k = (�α)|α|≤k . In particular

|�≤ku| =
⎛

⎝
∑

|α|≤k

|�αu|2
⎞

⎠

1
2

. (2.5)
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Informally speaking, it is useful to think of �≤k as any one of the vector fields �α with
|α| ≤ k.

We shall need the following convention for multi-indices: for β = (β1, · · · , β10) and
α = (α1, · · · , α10), we denote β < α if βi ≤ αi for i = 1, · · · , 10 and |β| < |α| (Here
|α| = ∑10

i=1 αi ). Similarly we denote β ≤ α if βi ≤ αi for i = 1, · · · , 10. The commutator
of the vector fields is given below and the proof is standard (cf. [21]).

Lemma 2.1 (Commutator) For any given multi-index α = (α1, · · · , αι), we have

[∂i , �
α] =

∑

|β|≤|α|−1

aαβ�β∂ =
∑

|β|≤|α|−1

ãαβ∂�β, (2.6)

[�, �α] = [� + 1, �α] = 0, (2.7)

where �α = (�α1 , · · · , �αι ), aαβ , ãαβ are constants and [A, B] = AB − B A is the usual
commutator.

For a real-valued function u : R3 → R we denote its usual Lebesgue L p-norm by

‖u‖p = ‖u‖L p(R3) =
{ (∫

R3 |u|p dx
) 1

p , 1 ≤ p < ∞;
esssupx∈R3 |u(x)|, p = ∞.

(2.8)

We use the following convention for the Fourier transform pair:

f̂ (ξ) =
∫

R3
f (x)e−2π iξ ·x dx, f (x) =

∫

R3
f̂ (ξ)e2π iξ ·x dξ. (2.9)

We thereby denote the usual Sobolev norm for 0 ≤ s < ∞ as follows:

‖u‖Ḣ s = ‖u‖Ḣ s (R2) = ‖|∇|su‖2 = ‖(2π |ξ |)s f̂ (ξ)‖2, (2.10a)

‖u‖Hs = √‖u‖2 + ‖u‖Ḣ s = ‖〈2π |ξ |〉s f̂ (ξ)‖2. (2.10b)

For integer J ≥ 3, we shall denote

E J = E J (u(t, ·)) = ‖(∂�≤J u)(t, ·)‖22. (2.11)

For any two quantities A, B ≥ 0, we write A � B if A ≤ C B for some unimportant
constant C > 0 and such C may vary from line to line if not specified. We write A ∼ B if
A � B and B � A. We write A � B if A ≤ cB and c > 0 is a sufficiently small constant.
The needed smallness is clear from the context.

Throughout this work we assume t ≥ 2 if it is not specified.

Decay estimates

We collect some decay estimates in the following lemmas.

Lemma 2.2 (Klainerman–Sobolev) Let h(t, x) ∈ C∞([0,∞) × R
3) and assume h(t, x) is

Schwartz, i.e. h(t, x) ∈ S(R3) for every t > 0. Then

〈t + |x |〉〈t − |x |〉 1
2 |h(t, x)| � ‖�̃≤3h(t, ·)‖2 ∀t > 0, x ∈ R

3. (2.12)

Proof The proof is standard therefore we omit the details. We also emphasize that (2.12)
involves L0 that may lead to trouble when applied to the KGZ system, so that one must be
carefully examining L0 terms. ��
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Lemma 2.3 For x ∈ R
3 with |x | ≤ t

2 , t ≥ 1, we have for any u ∈ S(R3)

t
3
4 |u(t, x)| � ‖∂≤1�≤2u‖L2

x (R3) (2.13)

where ∂ = ∂t , ∂1, · · · , ∂3.

Proof We refer the readers to Lemma 2.4 in [16]. ��

Lemma 2.4 For |x | ≥ t
2 and t ≥ 1, we have the following estimate for u ∈ S(R3):

〈t − |x |〉 1
2 〈t + |x |〉|u(t, x)| � ‖�≤2u‖2 + ‖〈t − | · |〉∇�≤2u‖2. (2.14)

Proof Wewrite u(t, x) in the spherical coordinates as v(t, r , θ, ϕ)with x = (r cos θ cosϕ, r
cos θ sin ϕ, r sin θ). Then we have |u| � ‖∂≤1

θ ∂≤1
ϕ v‖L2

θ L2
ϕ
. If |t − r | ≤ 1, we have

〈t − r〉t2|u|2 � t2|u(t, x)|2 � t2
∫ ∞

r
|∂ρ(v(t, ρ, θ, ϕ)2)| dρ (2.15)

�
∫ ∞

r
|v(t, ρ, θ, ϕ)||∂ρv(t, ρ, θ, ϕ)| ρ2dρ (by r ≥ t

2
) (2.16)

� ‖∂≤1
θ ∂≤1

ϕ v‖22 + ‖∂≤1
θ ∂≤1

ϕ ∂ρv‖22 (2.17)

� ‖�≤2u‖22 + ‖∇�≤2u‖22. (2.18)

Now we assume |t − r | ≥ 1. We use the Sobolev inequality: for any h ∈ S(R), we have for
t
2 ≤ r < t

(t − r)r2|h(r)|2 �
∫ t

r
|∂ρ

(
(t − ρ)ρ2|h(ρ)|2) |dρ (2.19)

�
∫ t

r
|h(ρ)|2ρ2dρ +

∫ t

r
|t − ρ||h(ρ)|2ρdρ +

∫ t

r
|t − ρ|ρ2|∂ρh(ρ)||h(ρ)|dρ

(2.20)

�
∫ t

r
|h(ρ)|2ρ2dρ +

∫ t

r
|t − ρ|2|∂ρh(ρ)|2ρ2dρ. (2.21)

For r > t , one gets

(r − t)r2|h(r)|2 �
∫ r

t
|∂ρ

(
(ρ − t)ρ2|h(ρ)|2) |dρ (2.22)

�
∫ r

t
|h(ρ)|2ρ2dρ +

∫ r

t
|t − ρ||h(ρ)|2ρdρ +

∫ r

t
|t − ρ|ρ2|∂ρh(ρ)||h(ρ)|dρ

(2.23)

�
∫ r

t
|h(ρ)|2ρ2dρ +

∫ r

t
|t − ρ|2|∂ρh(ρ)|2ρ2dρ. (2.24)

These imply that (after applying |u| � ‖u‖H2(S2))

〈t − r〉 1
2 t |u(t, x)| � ‖�≤2u‖2 + ‖〈t − | · |〉∇�≤2u‖2. (2.25)

��
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Lemma 2.5 Suppose u = u(t, x) has continuous second order derivatives. Then for t > 0
and r = |x | we have

|〈t − r〉∂t t u| + |〈t − r〉∇∂t u| + |〈t − r〉∇2u| � |∂�≤1u| + 〈t + r〉|�u|. (2.26)

Proof It is clear that (2.26) holds for |t − r | ≤ 1. We then assume |t − r | ≥ 1.
Case 1. r ≤ 2t . Recalling �i0u = xi∂t u + t∂i u, we have for x ∈ R

3

∂t�i0u = xi∂t t u + ∂i u + t∂t∂i u, (2.27)

∂i�i0u = 3∂t u + r∂r∂t u + t�u. (2.28)

(Note we used Einstein summation here). This implies that

(t2 − r2)�u = r2�u + r∂r u − 3t∂t u − xi∂t�i0u + t∂i�i0u (by � = ∂t t − �),

(2.29)

�⇒ |(t − r)�u| � r |�u| + |∂�≤1u|, (2.30)

�⇒ |(t − r)∂t t u| ≤ |(t − r)(�u + �u)| � (t + r)|�u| + |∂�≤1u|. (2.31)

Then we focus on ∂t∇u and ∇2u. From (2.27) we know that for 1 ≤ i ≤ 3

∂i∂t u = 1

t
∂t�i0u − 1

t
∂i u − xi

t
∂t t u, (2.32)

�⇒ |(t−r)∂i∂t u|� |∂t�i0u|+|∂i u|+|(t−r)∂t t u|� |∂�≤1u|+(t+r)|�u| (by (2.31)).
(2.33)

By the definition of �i0u = xi∂t u + t∂i u, we have for 1 ≤ i, j ≤ 3

∂ j�i0u = δi j∂t u + xi∂t∂ j u + t∂i j u, (2.34)

�⇒ |(t − r)∂i j u| = (t − r)

t
(∂ j�i0u − δi j∂t u − xi∂t∂ j u) � |∂�≤1u| + |(t − r)∂t∂ j u|

(2.35)

� |∂�≤1u| + (t + r)|�u| (by (2.33)). (2.36)

Case 2. r ≥ t
2 . Recall that � = t∂r + r∂t . Therefore we have

�∂t u = t∂r∂t u + r∂t t u, �∂r u = t∂rr u + r∂t∂r u. (2.37)

Then we have

(t2 − r2)∂t∂r u = t�∂t u − r�∂r u − tr(∂t t u − ∂rr u) (2.38)

= t�∂t u − r�∂r u − tr

(

�u + 2

r
∂r u + 1

r2
�S2u

) (

by � = ∂rr + 2

r
∂r + �S2

r2

)

,

(2.39)

�⇒ |(t − r)∂t∂r u| � |∂�≤1u| + (t + r)|�u|. (2.40)

Here �S2 is the Laplace-Beltrami operator on the sphere. Therefore we get |(t − r)∂t∇u| �
|∂�≤1u| + (t + r)|�u|. On the other hand, we have

t2∂rr u − r2∂t t u = t�∂r u − r�∂t u, (2.41)

�⇒ (t2 − r2)∂rr u = 2r∂r u + �S2u + r2�u + t�∂r u − r�∂t u, (2.42)

�⇒ |(t − r)∂rr u| � |∂�≤1u| + (t + r)|�u|. (2.43)
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This implies that 〈t−r〉|�u| and 〈t−r〉|∇2u| can be controlled byRHSof (2.43). Furthermore
we use the identity ∂t t u = �u +�u and deduce that 〈t − r〉|∂t t u| � |∂�≤1u| + (t + r)|�u|.
Thus we complete the proof. ��
Lemma 2.6 Assume h ∈ S(R3). Then

‖h‖2 � ‖〈x〉∇h‖2. (2.44)

Proof Let ϕ = r
〈r〉 . Then

0 ≤
∫

(〈r〉∂r h + ϕh)2 dx =
∫

(〈r〉2(∂r h)2 + 〈r〉ϕ∂r (h
2) + ϕ2h2) dx,

�⇒
∫

〈r〉2|∂r h|2 dx ≥
∫ (

1

r2
∂r (r

2〈r〉ϕ) − ϕ2
)

h2 dx ≥
∫

(3 − (
r

〈r〉 )
2)h2 dx �

∫

|h|2 dx .

��

Pointwise estimates for the Klein–Gordon component

We here collect some previously known pointwise estimates for the Klein–Gordon com-
ponents, one can refer to Georgiev in [16] (also see [11]). Let {p j }∞0 be the usual
Littlewood-Paley partition of the unity

∑

j≥0

p j (s) = 1, s ≥ 0,

which satisfies

0 ≤ p j ≤ 1, p j ∈ C∞
0 (R) for all j ≥ 0, (2.45)

and

supp p0 ⊂ (−∞, 2], supp p j ⊂ [2 j−1, 2 j+1] for all j ≥ 1. (2.46)

Lemma 2.7 Let w be the solution of the Klein–Gordon equation
{

�w + w = f ,

(w, ∂tw)|t=0 = (w0, w1),
(2.47)

with f = f (t, x) a sufficiently nice function. Then for all t ≥ 0, it holds

〈t + |x |〉 3
2 |w(t, x)| �

∑

j≥0

( sup
0<s≤t

p j (s)‖〈s + | · |〉�≤4 f (s, ·)‖L2 + ‖〈| · |〉 3
2 p j (| · |)�≤4w(0, ·)‖L2 ).

(2.48)

Lemma 2.8 Assume the same conditions as in Lemma 2.7, for all t ≥ 0 we have

〈t + |x |〉 3
2 |w(t, x)| � sup

0<s≤t
‖〈s + | · |〉1+δ�≤4 f (s, ·)‖L2 + ‖〈| · |〉 3

2+δ�≤4w(0, ·)‖L2 .

(2.49)

Here 0 < δ � 1.
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Lemma 2.9 Suppose u = u(t, x) is a smooth solution to �u + u = F. Then for t > 0 we
have

∣
∣
∣
〈t + r〉
〈t − r〉u

∣
∣
∣ �|∂�≤1u| +

∣
∣
∣
〈t + r〉
〈t − r〉 F

∣
∣
∣. (2.50)

Proof If r < t
2 or r > 2t , we have 〈t + r〉 ∼ 〈t − r〉. This implies that

∣
∣
∣
〈t + r〉
〈t − r〉u

∣
∣
∣ � |u| � |�u| + |F | � |∂�≤1u| + |F |.

If t
2 ≤ r ≤ 2t , we recall that (2.29) gives that

(t2 − r2)�u = r2�u + r∂r u − 3t∂t u − xi∂t�i0u + t∂i�i0u (2.51)

= −r2u + r2F + r∂r u − 3t∂t u − xi∂t�i0u + t∂i�i0u (by �u + u = F) (2.52)

�⇒ u = − t2 − r2

r2
�u + F + 1

r
∂r u − 3t

r2
∂t u − 1

r2
(xi∂t�i0u − t∂i�i0u). (2.53)

This implies (2.50) holds for t
2 ≤ r ≤ 2t . ��

Remark 2.1 Note that one can iterate (2.50) as long as the nonlinear term F is sufficiently
nice. One example is F = u2 then F can easily absorb 〈t+r〉

〈t−r〉 and eventually lead to the decay
of |u| � 〈t + r〉−M 〈t − r〉M for any large M . Such property of u can be considered as a
machinery that one can gain any decay in 〈t + r〉 with a trade-off of losing 〈t − r〉 decay.

Verification of the smallness conditions of the Initial data

In this subsection we verify the smallness condition (1.1) is consistent with the vector fields:

Proposition 2.1 Assume (φ0, φ1, n0, n1) satisfy the condition (1.1), then for any J ≤ K we
have

‖�≤J φ|t=0‖2 �
(‖〈x〉J 〈∇〉J φ0‖2 + ‖〈x〉J 〈∇〉J−1φ1‖2

)

⎛

⎝1 +
J−3∑

j=0

‖〈x〉 j+1∇ j (∇n0, n1)‖2
⎞

⎠ ,

(2.54)

‖�≤J n|t=0‖2 �
(‖〈x〉J−2〈∇〉J−2φ0‖2 + ‖〈x〉J−2〈∇〉J−3φ1‖2

)

⎛

⎝1 +
J−1∑

j=0

‖〈x〉 j+1∇ j (∇n0, n1)‖2
⎞

⎠ .

(2.55)

Similarly, we also have

‖〈x〉2�≤k+4φ|t=0‖2 �
(‖〈x〉k+6〈∇〉k+4φ0‖2 + ‖〈x〉k+6〈∇〉k+3φ1‖2

)

⎛

⎝1 +
k+2∑

j=0

‖〈x〉 j+1∇ j (∇n0, n1)‖2
⎞

⎠ . (2.56)

Proof The proof relies on an induction and we only sketch the idea. With no loss, we only
consider the “worst” scenario as follows:

‖〈x〉J ∂ J
t φ|t=0‖2 � ‖〈x〉J ∂ J−2

t �φ|t=0‖2 + ‖〈x〉J ∂ J−2
t φ|t=0‖2 + ‖〈x〉J ∂ J−2

t (φn)|t=0‖2.
(2.57)

123



On the global well-posedness and scattering of the 3D Klein... Page 13 of 23    17 

Note that by induction assumption we shall have

‖〈x〉J ∂ J−2
t �φ|t=0‖2 + ‖〈x〉J ∂ J−2

t φ|t=0‖2 � ‖〈x〉J 〈∇〉J φ0‖2 + ‖〈x〉J 〈∇〉J−1φ1‖2.
(2.58)

For the nonlinear part, naively we only present the worst case:

‖〈x〉J ∂ J−2
t (φn)|t=0‖2 � ‖〈x〉J (∂

≤J−2
t φ)(∂

≤ J−2
2

t n)|t=0‖2
+ ‖〈x〉J (∂

≤J−2
t n)(∂

≤ J−2
2

t φ)|t=0‖2 + · · · (2.59)

� ‖〈x〉J ∂
≤J−2
t φ|t=0‖2‖∂≤ J−2

2
t n|t=0‖∞ + ‖〈x〉J ∂

≤ J−2
2

t φ|t=0‖∞‖∂≤J−2
t n|t=0‖2 + · · · ,

(2.60)

where · · · are terms that can be handled similarly. Then by induction and the H2(R3) ↪→
L∞(R3) embedding we have

‖〈x〉J ∂
≤J−2
t φ|t=0‖2‖∂≤ J−2

2
t n|t=0‖∞ (2.61)

� (‖〈x〉J 〈∇〉J−2φ0‖2 + ‖〈x〉J 〈∇〉J−3φ1‖2)
J
2∑

j=0

‖〈x〉 j+1∇ j (∇n0, n1)‖2 (2.62)

and

‖〈x〉J ∂
≤ J−2

2
t φ|t=0‖∞‖∂≤J−2

t n|t=0‖2 (2.63)

� (‖〈x〉J 〈∇〉 J+2
2 φ0‖2 + ‖〈x〉J 〈∇〉 J

2 φ1‖2)
J−3∑

j=0

‖〈x〉 j+1∇ j (∇n0, n1)‖2. (2.64)

The general case ‖� J φ|t=0‖2 follows from similar arguments. ��

3 uniform boundedness of the energy

To prove Theorem 1.1, we first make an a priori hypothesis: assume

|�≤kn| ≤ C1ε〈t + r〉− 3
4 〈r − t〉− 1

2 , (3.1)

|�≤kφ| ≤ C2ε〈t + r〉− 3
2 , (3.2)

where the positive constantsC1, C2 will be chosen later. Asmentioned earlier, we decompose
the wave component into n = n0 + �n�, where

{
�n0 = 0,

(n0, ∂t n0)|t=0 = (n0, n1),
and

{
�n� = |φ|2,
(n�, ∂t n�)|t=0 = 0.

(3.3)

Remark 3.1 It is worth mentioning that here the assumption on wave field n only needs

〈t + r〉− 3
4 〈t − r〉− 1

2 rather than the optimal decay 〈t + r〉−1〈t − r〉− 1
2 to show the uniform

boundedness of the energy. However we will close our bootstrap scheme by showing the
optimal decay-in-time later.
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Lemma 3.1 (Uniform boundedness of the energy) Let (φ, n) be a couple of solutions to
(KGZ). Assume (3.1) and (3.2) hold. Let K ≥ k + 4. Then we have

‖∂�≤K φ‖2 + ‖�≤K φ‖2 + ‖∂∇�≤K n�‖2 + ‖�≤K n‖L2 ≤ Cε (3.4)

and

‖∂�≤k+4n�‖L2 ≤ (Cε)2. (3.5)

Proof To begin with we first consider the wave component ‖�≤K n‖2.
Step 1, the wave component n.
Note that since n = n0 + �n�, we have for any multi-index α,

|�α�n�| � |��≤|α|n�| + |∇∂t�
≤|α|n�| � |∂∇�≤|α|n�|. (3.6)

As a result for |β| ≤ K , it is clear that

‖�βn‖22 � ‖�βn0‖22 + ‖�β�n�‖22 � ‖�βn0‖22 + ‖∂∇�≤|β|n�‖22. (3.7)

Then we estimate the two terms in RHS of (3.7).
Step 1.1, we estimate ‖�βn0‖2

L2 . Denote X(∂) = (1 + t2 + r2)∂t + 2tr∂r .
Obviously,

X(∂)u = (1 + t2 + r2)∂t u + 2tr∂r u (3.8)

= ∂t u + t2∂t u + tr∂r u + r2∂t u + tr∂r u (3.9)

= ∂t u + t L0u + r�u (3.10)

� 〈r + t〉(|L0u| + |�u|). (3.11)

Let |β̃| ≤ K − 1, we have ��β̃n0 = 0. Then we have

0 =
∫

��β̃n0 · X(∂)�β̃n0 ∼ d

dt
(‖�≤1�β̃n0‖22 + ‖L0�

β̃n0‖22). (3.12)

This implies that

‖�≤K n0‖22 �
∑

|β̃|≤K−1

‖��β̃n0‖22(0) + ‖L0�
β̃n0‖22(0) + ‖�β̃n0‖22(0)≤ (Cε)2. (3.13)

Note that here the smallness condition on the initial data (1.1) is required:

‖(�≤K n0)t=0‖2+‖(L0�
≤K−1n0)t=0‖22≤

K∑

j=0

‖〈x〉 j∇ j n0‖2 +
K−1∑

j=0

‖〈x〉 j+1∇ j n1‖2≤Ciε,

(3.14)

where the constant Ci > 0 is known from (2.54)–(2.56). We also point out here that the
requirement of ‖n0‖2 ≤ ε can be replaced by ‖〈x〉∇n0‖2 as a consequence of the embedding
in (2.44).

Remark 3.2 This method is called X(∂) trick in some literature (cf. [21]) and known as the
conformal energy estimates in other references such as [8, 11]. Since the equation of n0 is
not related to φ, then we can replace � by �̃ in step 1.1. Thus we obtain the following
estimates:

‖�̃≤K n0‖2 � ‖�̃≤K n0‖2(0) �
K−1∑

j=0

‖〈x〉 j+1∇ j (∇n0, n1)‖2 ≤ ε. (3.15)
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Step 1.2, we estimate ‖∂∇�≤|β|n�‖22.Let |γ | = m and m ≤ |β| is a running
index, we have

�∇�γ n� =
∑

γ1+γ2=γ

Cγ ;γ1,γ2∇�γ1φ�γ2φ. (3.16)

Multiplying both sides of (3.16) by ∂t∇�γ n�, we obtain

d

dt
‖∂∇�γ n�‖22 �

∫

|∇�γ1φ�γ2φ∂t∇�γ n�| (3.17)

� (‖∇�≤[ K−1
2 ]φ‖∞‖�≤K φ‖2 + ‖∇�≤K φ‖2‖�≤[ K

2 ]φ‖∞)‖∂t∇�γ n�‖2
(3.18)

� ‖�≤[ K−1
2 ]+1φ‖∞(‖∇�≤K φ‖2 + ‖�≤K φ‖2)‖∂t∇�γ n�‖2 (3.19)

≤ Cεt−
3
2 (‖∇�≤K φ‖2 + ‖�≤K φ‖2)‖∂t∇�γ n�‖2 (by (3.2)). (3.20)

Note that here we need [ K−1
2 ] + 1 ≤ k ≤ K − 4 �⇒ K ≥ 8. This implies that

d

dt
‖∂∇�γ n�‖22 ≤ Cεt−

3
2 (‖∇�≤K φ‖22 + ‖�≤K φ‖22 + ‖∂t∇�γ n�‖22). (3.21)

Step 2, we estimate the Klein–Gordon component ‖�≤K φ‖2,
‖∂�≤K φ‖2.

Let α be a multi-index and |α| ≤ K . Write 
 = �αφ. We have

�
 + 
 = −
∑

α1+α2=α

Cα;α1,α2�α1n�α2φ. (3.22)

Let p(t, r) = q(r − t), where

q(s) =
∫ s

−∞
〈τ 〉−1(log(2 + τ 2)

)−2
dτ. (3.23)

Clearly

−∂t p = ∂r p = q ′(r − t) = 〈r − t〉−1(log(2 + (r − t)2)
)−2

. (3.24)

Multiplying both sides of (3.22) by ep∂t
, we obtain

LHS = 1

2

d

dt
(‖e

p
2 ∂
‖22 + ‖e

p
2 
‖22) + 1

2

∫

epq ′(|T 
|2 + |
|2), (3.25)

where |∂
|2 = ∑3
i=0 |∂i
|2 and |T 
|2 = ∑3

i=1 |Ti
|2. We split the RHS into two cases:

RHS = −
∑

α1+α2=α

Cα;α1,α2
∫

ep�α1n�α2φ∂t
. (3.26)

Case 1: α1 < α2 ≤ α.

RHS �
∫

epq ′|�α2φ|2 +
∫

ep

q ′ |�≤[ |α|
2 ]n|2|∂t
|2 � OK+‖〈r − t〉 1+δ1

2 �≤[ |α|
2 ]n‖2∞‖∂t
‖22

(3.27)

≤ OK+(Cε)2t−
3
2+δ1‖∂t
‖22 (by(3.1)). (3.28)

Here 0 < δ1 < 1
2 and OK are the harmless terms that can be absorbed by the LHS.
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Case 2: α ≥ α1 ≥ α2.

RHS � ‖�≤|α|n‖2‖�≤[ |α|
2 ]
‖∞‖∂t
‖2 (3.29)

≤ Cεt−
3
2 (‖�≤|α|n0‖2 + ‖�≤|α|�n�‖2)‖∂t
‖2 (by (3.2) and n = n0 + �n�)

(3.30)

≤ (Cε)2t−
3
2 ‖∂t
‖2 + Cεt−

3
2 ‖∂∇�≤|α|n�‖2‖∂t
‖2 (by (3.13)). (3.31)

Then we derive that

d

dt
(‖∂
‖22 + ‖
‖22) + 1

2

∫

epq ′(|T 
|2 + |
|2)

≤ (Cε)2t−
3
2+δ1‖∂
‖22 + (Cε)2t−

3
2 ‖∂
‖2 + Cεt−

3
2 ‖∂∇�≤|α|n�‖2‖∂t
‖2.

(3.32)

Then by combining (3.21) and (3.32), we obtain that

d

dt
(‖∂�≤K φ‖22 + ‖�≤K φ‖22 + ‖∂∇�≤K n�‖22) (3.33)

≤ (Cε)2t−
3
2+δ1‖∂
‖22 + (Cε)2t−

3
2 ‖∂
‖2 + Cεt−

3
2 (‖∇�≤K φ‖22 + ‖�≤K φ‖22

+ ‖∂t∇�≤K n�‖22). (3.34)

This implies that

‖∂�≤K φ‖2 + ‖�≤K φ‖2 + ‖∂∇�≤K n�‖2 ≤ Cε. (3.35)

Here we need the following smallness assumption:

‖(∂�≤K φ)|t=0‖2 + ‖(�≤K φ)|t=0‖2 + ‖(∂∇�≤K n�)|t=0‖2 ≤ Ciε, (3.36)

where the positive constant Ci is clear from the initial condition (cf. (2.54)-(2.56)).
Furthermore it follows from (3.7) and (3.13) that

‖�≤K n‖2 ≤ Cε. (3.37)

Thus (3.4) holds.
Next we show (3.5). Let α be a multi-index and |α| = m ≤ k + 4. Then we have

��αn� =
∑

α1+α2=α

Cα;α1,α2�α1φ�α2φ. (3.38)

Multiplying both sides of (3.38) by ∂t�
αn�, we obtain

d

dt
‖∂�αn�‖22 �

∑

α1+α2=α

∫

|�α1φ�α2φ∂t�
αn�| (3.39)

� ‖�≤[ m
2 ]φ‖∞‖�≤mφ‖L2‖∂t�

αn�‖2 (3.40)

≤ (Cε)2t−
3
2 ‖∂t�

αn�‖2 (by (3.2) and (3.4)), (3.41)

�⇒ ‖∂�αn�‖2 � ‖(∂�αn�)|t=0‖2 + (Cε)2. (3.42)

Since interchanging the vector fields merely generates lower-order terms, we estimate the
initial data as follows:

‖(∂�αn�)|t=0‖2 � ‖(�α1
� ∂

α2
t ∇α3n�)|t=0‖2
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�
∑

α1+α2+α3≤K+1

α1∑

J=0

‖〈x〉J (∂ J ∂
α2
t ∇α3n�)|t=0‖2, (3.43)

where �� = �i0,�i j . Recalling the equation of n� in (3.3), we have for any b ≥ 2 and
a ≥ 0

∂b
t ∇an� = ∂b−2

t ∇a�n� + ∂b−2
t ∇a(|φ|2).

Since (n�, ∂t n�)|t=0 = 0, one has (by Proposition 2.1)

α1∑

J=0

‖〈x〉J (∂ J ∂
α2
t ∇α3n�)|t=0‖2

� ‖〈x〉[ K+1
2 ]+1〈∂〉K−1φ|t=0‖2‖〈x〉[ K+1

2 ]〈∂〉[ K+1
2 ]φ|t=0‖∞ ≤ Cε2. (3.44)

The cases b = 0, 1 follow easily. Hence (3.5) holds combining the estimates (3.42) and
(3.44). The initial condition of the Klein–Gordon component can be handled similarly and
we refer the analysis to Proposition 2.1.

Remark 3.3 Note that here even though the initial data (�αn�, ∂t�
αn�)|t=0 are not zero, it

is of the order O(ε2) thanks to the nonlinear structure. Therefore one can treat n� as a higher
order perturbation of n0.

��

4 Optimal pointwise decay in time and scattering

In this section we complete the proof of Theorem 1.1 by showing the a priori hypothesis
and the scattering. We first prove the two assumptions:

4.1 Assumption 1: wave component (3.1)

Recall n = n0 +�n�. Then we separate the proof into two parts: given multi-index |α| = k,

|�αn0| ≤ Cε〈r − t〉− 1
2 〈r + t〉−1, (4.1)

|�α�n�| ≤ Cε〈r − t〉− 1
2 〈r + t〉−1. (4.2)

Homogeneous part n0 (4.1):
Since the equation of �αn0 is not related to φ then by the Klainerman Sobolev inequality

(2.12) we can gain a better decay for the homogeneous part with a careful analysis of the
conformal energy:

|�αn0| ≤ Cks〈r − t〉− 1
2 〈r + t〉−1‖�̃≤k+3n0‖2 (by (2.12)) (4.3)

≤ Cksε〈r − t〉− 1
2 〈r + t〉−1 (by (3.15)), (4.4)

where Cks is the known constant from the Klainerman-Sobolev embedding (2.12).
Inhomogeneous part n� (4.2):
Recall from (3.6) that we have

|�α�n�| � |��≤|α|n�| + |∇∂t�
≤|α|n�| � |∂∇�≤|α|n�|. (4.5)
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Therefore it suffices to show that

|∂∇�≤|α|n�| ≤ (Cε)2〈r − t〉− 1
2 〈r + t〉−1. (4.6)

For this purpose, we consider the two cases r < t
2 and r ≥ t

2 . With no loss we assume that
t > 2.

Case 1: r < t
2 . Recall (2.26): |〈r − t〉∂∇u| ≤ |∂�≤1u| + (t + r)|�u| for all r > 0. We

obtain

|〈r − t〉∂∇�αn�| � |∂�≤|α|+1n�| + (t + r)|��αn�| (4.7)

� t−
3
4 ‖∂�≤|α|+4n�‖2 + ‖〈t + | · |〉�≤[ |α|

2 ]φ‖∞‖�≤|α|φ‖∞ (by (2.13)) (4.8)

� ε2t−
3
4 + ε2t−2 (by (3.5) and (3.2)). (4.9)

Case 2: r ≥ t
2 . By (2.14), we obtain

〈r − t〉 1
2 t |∂∇�αn�| � ‖∂�≤|α|+3n�‖2 + ‖〈t − | · |〉∂∇�≤|α|+3n�‖2 (4.10)

� ‖∂�≤|α|+4n�‖2 + ‖〈t + | · |〉��≤|α|+3n�‖2 (by (2.26))
(4.11)

� ε2 + ‖〈t + | · |〉��≤|α|+3n�‖2 (by (3.5)). (4.12)

Recall �n� = |φ|2. Let β be a multi-index and |β| ≤ |α| + 3, we have

��βn� =
∑

β1+β2=β

Cβ;β1,β2�β1φ�β2φ.

This implies that

‖〈t + | · |〉��≤|α|+3n�‖2 � ‖�≤|α|+3φ‖2‖〈t + | · |〉�≤[ |α|+3
2 ]φ‖∞

≤ (Cε)2t−
1
2 (by (3.4) and (3.2)). (4.13)

It follows that

〈r − t〉 1
2 t |∂∇�αn�| ≤ (Cε)2, for r ≥ t

2
. (4.14)

Thus we have proved (4.6). Then it follows that

|�αn| ≤ |�αn0| + |�α�n�| (4.15)

≤ Cksε〈r − t〉− 1
2 〈r + t〉−1 + (Cε)2〈r − t〉− 1

2 〈r + t〉−1 (by (4.4) and (4.6)) (4.16)

≤ (Cksε + C̃nε2)〈r − t〉− 1
2 〈r + t〉−1. (4.17)

Then it suffices to choose C1 > Cks + C̃nε in (3.1).

4.2 Assumption 2: Klein–Gordon component (3.2)

Let β be a multi-index and |β| ≤ k. Then �βφ satisfies
{

��βφ + �βφ = −∑
β1+β2=β Cβ;β1,β2�β1n�β2φ =: F̃,

(φ, ∂tφ)|t=0 = (φ0, φ1).
(4.18)
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By (2.49), we have

〈t + |x |〉 3
2 |�βφ(t, x)| � sup

0<s≤t
‖〈s + | · |〉1+δ�≤4 F̃(s, ·)‖L2 + ‖〈| · |〉2�≤4�βφ(0, ·)‖L2 ,

(4.19)

where 0 < δ � 1. For any s ∈ (0, t) we have

‖〈s + | · |〉1+δ�≤4 F̃(s, ·)‖L2 (4.20)

� ‖�≤|β|+4n‖L2‖〈s + | · |〉1+δ�≤[ |β|+4
2 ]φ‖L∞ + ‖〈s + | · |〉1+δ�≤[ |β|+4

2 ]n�≤|β|+4φ‖L2

(4.21)

� ε2 + ‖〈s + | · |〉1+δ�≤[ |β|+4
2 ]n�≤|β|+4φ‖L2 (by (3.2) and (3.4)). (4.22)

For the last term in (4.22), we recall (2.50): for u satisfying �u + u = F , one has
∣
∣
∣
〈t + r〉
〈t − r〉u

∣
∣
∣ �|∂�≤1u| +

∣
∣
∣
〈t + r〉
〈t − r〉 F

∣
∣
∣. (4.23)

Let u = �μφ with |μ| ≤ |β| + 4. Since ��μφ + �μφ = ∑
μ1+μ2=μ Cμ;μ1,μ2�

μ1n�μ2φ,
it follows that

∥
∥
∥
∥
〈t + | · |〉
〈t − | · |〉�

μφ

∥
∥
∥
∥
2

�‖∂�≤|μ|+1φ‖2 +
∑

μ1+μ2=μ

∥
∥
∥
∥
〈t + | · |〉
〈t − | · |〉�

μ1n�μ2φ

∥
∥
∥
∥
2

� ε. (4.24)

Thus
∥
∥
∥〈s + | · |〉1+δ�≤[ |β|+4

2 ]n�≤|β|+4φ

∥
∥
∥
2

�
∥
∥
∥〈s + | · |〉 3

4 〈s − | · |〉 1
2 �≤[ |β|+4

2 ]n
∥
∥
∥

L∞

∥
∥
∥
∥
∥

〈s + | · |〉 1
4+δ

〈s − | · |〉 1
2

�≤|β|+4φ

∥
∥
∥
∥
∥
2

(4.25)

≤ Cε‖〈s + | · |〉
〈s − | · |〉�

≤|β|+4φ‖2, (by (3.1)) (4.26)

≤ Cε2, (by (4.24)). (4.27)

Here the constant C may vary from line to line. It then follows that

〈t + r〉− 3
2 |�βφ(t, x)| ≤Cε2 + ‖〈| · |〉2�≤4�βφ(0, ·)‖2 (4.28)

≤Cε2 + Ciε (by (1.1) and (2.56)) (4.29)

≤Ciε + C̃φε2. (4.30)

Then it suffices to choose C2 > Ci + C̃φε in (3.2), where Ci is the known constant from the
initial condition (cf. (2.56)).

4.3 Scattering

It remains to show the scattering of (φ, n) in the energy space XK = H K+1 × H K × H K ×
H K−1, namely there exists a couple of solutions to the linear system (φl , nl) such that

lim
t→∞ ‖(φ, ∂tφ, n, ∂t n) − (φl , ∂tφl , nl , ∂t nl)‖XK = 0, (4.31)
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where (φ, ∂tφ, n, ∂t n)|t=0 = (φ0, φ1, n0, n1) and (φl , ∂tφl , nl , ∂t nl)|t=0 = (φl0 , φl1 , nl0 , nl1)

for some (φl0 , φl1 , nl0 , nl1). Recall that for the Cauchy problem for the following inhomoge-
neous 3d wave system:

�n = G , with (n, ∂t n)|t=0 = (n0, n1), (4.32)

the solution �n = (n, ∂t n) is given by

�n(t, x) = M(t)

(
n0

n1

)

+
∫ t

0
M(t − s)

(
0

G(s)

)

ds, (4.33)

where

M(t) =
(

cos(t |∇|) |∇|−1 sin(t |∇|)
−|∇| sin(t |∇|) cos(t |∇|)

)

. (4.34)

Similarly, for the Cauchy problem for the inhomogeneous 3d Klein–Gordon system:

�φ + φ = H , with (φ, ∂tφ)|t=0 = (φ0, φ1), (4.35)

the solution �φ = (φ, ∂tφ) is given by

�φ(t, x) = N (t)

(
φ0

φ1

)

+
∫ t

0
N (t − s)

(
0

H(s)

)

ds, (4.36)

where

N (t) =
(

cos(t〈∇〉) 〈∇〉−1 sin(t〈∇〉)
−〈∇〉 sin(t〈∇〉) cos(t〈∇〉)

)

. (4.37)

More specifically G(φ) = �|φ|2 and H(n, φ) = −nφ in our setting. By a standard semi-
group argument, it is known that the wave flow M(t) andKlein–Gordon flow N (t) are unitary
semi-groups on H J × H J−1 for J ∈ N

+. More precisely one can verify on the Fourier side
that for any J ∈ N

+ one has

‖M(t)‖HJ →HJ = ‖N (t)‖HJ →HJ = 1, (4.38)

where HJ = H J × H J−1. Moreover, one recalls that
(

nl

∂t nl

)

= M(t)

(
nl0
nl1

)

,

(
φl

∂tφl

)

= N (t)

(
φl0
φl1

)

. (4.39)

Note that by (3.4)-(3.5), we have
∫ ∞

0
‖G(φ)‖H K−1 + ‖H(φ, n)‖H K ≤ Cε2. (4.40)

In particular, we set
(

nl0
nl1

)

=
(

n0

n1

)

+
∫ ∞

0
M(−s)

(
0

G(φ)

)

ds, (4.41)

and
(

φl0
φl1

)

=
(

φ0

φ1

)

+
∫ ∞

0
N (−s)

(
0

H(φ, n)

)

ds, (4.42)

then since M(t) and N (t) are unitary semi-groups we have

‖
(

φ

∂tφ

)

(t) − N (t)

(
φl0
φl1

)

‖HK+1 ≤
∫ ∞

t
‖H(φ, n)‖H K ds, (4.43)
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and

‖
(

n
∂t n

)

(t) − M(t)

(
nl0
nl1

)

‖HK ≤
∫ ∞

t
‖G(φ)‖H K−1 ds. (4.44)

Therefore we have shown that (φ, n) scatters to (φl , nl) as t → +∞:

lim
t→∞ ‖(φ, ∂tφ, n, ∂t n) − (φl , ∂tφl , nl , ∂t nl)‖XK = 0. (4.45)
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Appendix A: An alternative approach to to estimate ‖0ˇn0‖2
L2
.

In this section we give an alternative approach to estimate ‖�βn0‖2
L2 as in Lemma 3.1. It is

clear that ��βn0 = 0. Therefore it is known that we can write �βn0 in the following mild
form:

�βn0(x) = (cos t D v0)(x) +
(
sin t D

D
v1

)

(x), (A.1)

where D = |∇| and (v0, v1) = (�βn0, ∂t�
βn0)|t=0. Then it follows that ‖�βn0‖2 ≤

‖ cos t D v0‖2 + ‖ sin t D
D v1‖2. One can easily show from the Fourier side that

‖ cos t D v0‖L2
x (R3) ∼ ‖ cos(t |ξ |)v̂0(ξ)‖L2

ξ (R3) � ‖v̂0‖L2
ξ (R3) � ‖v0‖L2

x (R3). (A.2)

Similarly by the Hardy’s inequality,

∥
∥
∥
∥
sin t D

D
v1

∥
∥
∥
∥

2

L2
x (R3)

�
∫

R3

(sin(t |ξ |)2
|ξ |2 |v̂1|2 dξ �

∫

R3

|v̂1|2
|ξ |2 dξ � ‖v̂1‖2H1

ξ (R3)
� ‖〈x〉v1‖2L2

x (R3)
.

(A.3)

Remark A.1 Note that compared to the X(∂) trick (conformal energy estimates), this propa-
gator estimate needs an additional assumption:

‖v0‖2 + ‖〈x〉v1‖2 �
K∑

j=0

‖〈x〉 j+1∇ j (∇n0, n1)‖2 ≤ Cε. (A.4)

One clearly sees the difference between (3.14) and (A.4).
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