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Abstract

It is well known that Allen-Cahn equation and Cahn-Hilliard equation

are essential to study the phase separation phenomenon of a two-phase or

a multiple-phase mixture. An important property of the solutions to those

two equations is that the energy functional, which is defined in this thesis,

decreases in time. To study these solutions, researchers developed different

numerical schemes to give accurate approximations, since analytic solutions

are only available in a very few simple cases. However, not all schemes sat-

isfy the energy-decay property, which is an important standard to determine

whether the scheme is stable. In recent work, Li, Qiao and Tang developed a

semi-implicit scheme for the Cahn-Hilliard equation and proved the energy-

decay property. In this thesis, we extend the semi-implicit scheme to the

Allen-Cahn equation and fractional Cahn-Hilliard equation with a proof of

the energy-decay property. Moreover, this semi-implicit scheme is practical

and could be applied to more general diffusion equations while preserving the

energy-decay stability.
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Lay Summary

This thesis extends a numerical scheme from previous literature for the

Cahn-Hilliard equation to the Allen-Cahn equation and fractional Cahn-Hilliard

equation, which are more general partial differential equations. These equa-

tions describe physical phenomena of interest in material science. We proved

the stability of such scheme by showing the energy is decreasing. Based on

our result, schemes with similar stability properties can be analyzed for more

general equations.
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The topic of this thesis is based on the previous work of the author’s su-
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Chapter 1

Introduction

Partial differential equations (PDE) often describe mathematical models

of physical phenomena. For example, wave equations describe the properties

of waves including sound waves, light waves and other waves, which help us

to study sound including noise and music, electromagnetics and fluid dynam-

ics.

Figure 1.1: Computational Simulation of 2D Waves [20]

To study PDE, we are interested in the solutions to a certain equation

in some domain under specific initial conditions and boundary conditions.

More information about the solution can help the physical model to be better
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Chapter 1. Introduction

understood. In mathematics, usually these studies focus on the existence,

uniqueness, regularity and some long-time behaviors of the solution.

Although sometimes it is possible to find explicit solutions of certain sim-

ple PDE, usually there are no explicit solutions. Thus, it is necessary to

compute approximate solutions using computer simulations. As a result,

throughout the area of partial differential equations, it is necessary to de-

velop well behaved numerical schemes that are guaranteed to approximate

PDE to an expected accuracy.

In this thesis, we consider modified versions of the Cahn-Hilliard equa-

tion. These equations were developed in [2] to describe the separation of

different metals in a binary alloy. They have been recognized as a generic

model that arises in many applications. Hence they have been well studied

by mathematicians, physicists and other scientists. The Cahn-Hilliard equa-

tion for u(x, t) is:


∂tu =∆(−ν∆u+ f (u)), (x, t) ∈Ω× (0,∞)

u(x,0)= u0

, (1.1)

where the vector position x is in the spatial domain Ω, which is taken to be

two dimensional periodic domain in this work, and t is time. The values of u

generally lie in the range [−1,1], with −1 representing the pure state of one

phase and +1 representing the pure state of the other phase. Values of u in

(−1,1) represent a mixture of the two phases. Here ν is a small parameter,
p
ν represents an average distance over which phases mix. The energy term

2



Chapter 1. Introduction

f (u) is defined by

f (u)= F ′(u)= u3 −u , F(u)= 1
4

(u2 −1)2.

The Cahn-Hilliard equation (1.1) describes the evolution of the phase frac-

tions under a competition between diffusion (which tends to mix phases) and

the preference of the phases to separate.

In this thesis, we consider the spatial domainΩ to be the 2π-periodic torus

T2 =R/2πZ×R/2πZ. Often, the Cahn-Hilliard equation and related equations

we consider in this thesis, describe the micro structure of macroscopic ma-

terial. Thus, considering a periodic domain is not a serious simplification:

we are modelling a representative piece of the micro structure. Considering

the periodic domain allows the use of efficient and accurate Fourier-spectral

numerical methods, which will be introduced later in the thesis.

It is not possible to find analytic solutions to the Cahn-Hilliard equation.

As a result, it is necessary to develop numerical methods to approximate the

solutions. Many approaches have been developed, [4] as an example. An-

other example computational result is shown in Figure 1.2 [19]. Such numer-

ical approximations should give accurate results to the values and qualita-

tive features of the solution. In the literature, a key feature is energy decay,

discussed in detail below. In [11], Li, Qiao and Tang propose a numerical

scheme for Cahn-Hilliard equation and hence prove that it preserves energy

decay with no a-priori assumptions. In this thesis, we extend their result to

other related models.

By standard arguments, the mass of the smooth solution of Cahn-Hilliard

3



Chapter 1. Introduction

equation is conserved, i.e. d
dt M(t) ≡ 0 , M(t) = ∫

Ω u(x, t) dx. This represents

the conservation of the two phases in the mixture. In particular, M(t) ≡ 0 if

M(0)= 0 and hence oftentimes zero-mean initial data would be considered as

a simpler but representative case. The associated energy functional is given

by

E(u)=
∫
Ω

(
1
2
ν|∇u|2 +F(u)

)
dx.

Assuming u(x, t) is a smooth solution with zero mean, one can deduce

d
dt

E(u(t))+
∫
Ω
|∇(−ν∆u+ f (u))|2 dx = 0,

which implies energy decay: d
dt E(u(t)) ≤ 0, and hence contributes to the ex-

istence of global solutions to Cahn-Hilliard equation as it provides a priori

H1-norm bound. On the other hand, the energy decay property is an impor-

Figure 1.2: Spectral Simulation of the Cahn Hilliard Equation in a 2D Do-
main [19]

4



Chapter 1. Introduction

tant index for whether a numerical scheme is “stable” or not.

Previous works by others [8, 14, 17, 18] give different semi-implicit Fourier-

spectral schemes, which involved different stabilizing terms of different “size”,

that preserve the energy decay property (we say these schemes are “energy

stable”). However, those works either require a strong Lipschitz condition on

the nonlinear source term, or require certain L∞ bounds on the numerical so-

lutions. To improve that, Li, Qiao and Tang proved an unconditional stability

theory on a large time-stepping semi-implicit Fourier-spectral scheme.

The scheme has the form:


un+1 −un

τ
=−ν∆2un+1 + A∆(un+1 −un)+∆ f (un) , n ≥ 0

u0 = u0 .
(1.2)

As usual τ is the time step, A is a large coefficient for the O(τ) stabilizing

term. Here O(τ) is defined as the well-known “big O” notation, i.e. |O(τ)| ≤ |cτ|
for a non-zero constant c, or in other words at most linear function of τ. As

a result of their work, the energy decay could still be satisfied with a well-

chosen large number A, with at least a size of O(1/ν| log(ν)|2), or c/ν| log(ν)|2

for some positive constant c that depends on the initial conditions.

Our work extends their semi-implicit scheme to the related Allen-Cahn

equation and fractional Cahn-Hilliard equation. The Allen-Cahn equation is

defined as: 
∂tu = ν∆u− f (u)

u(x,0)= u0 ;
(1.3)

5



Chapter 1. Introduction

while the zero-mass projected Allen-Cahn equation is defined as:


∂tu =Π0 (ν∆u− f (u))

u(x,0)= u0 ,
(1.4)

where Π0 is the zero mass projector, i.e. Π0( f ) = 1
(2π)d

∑
|k|≥1 f̂ (k)eik·x. The

difference between the Allen-Cahn equation and zero-mass projected Allen-

Cahn equation results from the fact that the mass functional is not preserved

in Allen-Cahn equation.

The fractional Cahn-Hilliard equation is defined as the following:


∂tu = ν∆

(
(−∆)αu+ (−∆)α−1 f (u)

)
, 0<α≤ 1

u(x,0)= u0

. (1.5)

As α→ 0, (1.3) becomes the zero-mass projected Allen-Cahn equation and

for α= 1, it coincides the original Cahn-Hilliard equation. Roughly speaking,

the fractional Cahn-Hilliard equation is an interpolation of the Allen-Cahn

and Cahn-Hilliard equations.

Remark 1. More general cases could be discussed. Roughly speaking we

could define a general “gradient” operator G and rewrite the equation as :


∂tu =G (ν∆u− f (u))

u(x,0)= u0

. (1.6)

When G = id, the identity map, (1.4) becomes the Allen-Cahn equation; when

G = (−∆)α, (1.4) becomes the fractional Cahn-Hilliard equation as discussed

6



Chapter 1. Introduction

above. And the corresponding semi-implicit scheme is


un+1 −un

τ
=G

(
ν∆un+1 − f (un)

)− AG (un+1 −un) , n ≥ 0

u0 = u0

. (1.7)

The main result of this thesis states that for any fixed time step τ, we

can always define a large constant A independent of τ in (1.5), such that the

numerical solution would be stable in the sense of satisfying the energy-decay

condition for “gradient” cases of A-C and fractional C-H. The analysis of other

gradients is left to future work.

For completeness, preliminaries would be given and the main lemma

would be proved in chapter 2; stability of first order semi-implicit schemes for

Allen-Cahn equation and fractional Cahn-Hilliard would be proved in chap-

ter 3 and 5 respectively. Moreover, we extend the results to the 3D case in

chapter 6. On the other hand, main results of error estimate and convergence

are given in chapter 4. Finally, we introduce two second order semi-implicit

schemes in chapter 7 while proving stability results and error estimates.

7



Chapter 2

Preliminaries and the Main

Lemma

2.1 Definitions and Useful Theorems

2.1.1 Lp Space

Throughout this paper we will denote the domainΩ=T2. If 1≤ p <∞, the

space Lp(Ω) consists of all complex-valued measurable functions that satisfy

∫
Ω
| f (x)|p dx <∞ .

For f ∈ Lp(Ω) we define the Lp norm of f by

|| f ||Lp(Ω) =
(∫
Ω
| f (x)|p dx

)1/p
.

8



2.1. Definitions and Useful Theorems

2.1.2 Weak Derivatives and Sobolev Space

We use the notation below:

x = (x1, x2, ..., xn) ∈Rn

α= (α1,α2, ...,αn) ∈Zn
+

∂α f = ∂α1+...+αn f
∂
α1
x1 ∂

α2
x2 ...∂αn

xn

.

(2.1)

We define the weak derivative in the following sense: For u, v ∈ L1
loc(Ω),

(i.e they are locally integrable); ∀φ ∈ C∞
0 (Ω), i.e φ is infinitely differentiable

(smooth) and compactly supported; and

∫
Ω

u(x) ∂αφ(x) dx = (−1)α1+...+αn

∫
Ω

v(x) φ(x) dx,

then v is defined to be the weak partial derivative of u, denoted by ∂αu. If u

is “smooth” enough, its weak derivative coincides with its derivative and the

equation above is basically integration by parts.

Suppose u ∈ Lp(Ω) and all weak derivatives ∂αu exist for |α| = α1 + ...+
αn ≤ k , such that ∂αu ∈ Lp(Ω) for |α| ≤ k, then we say u ∈Wk,p(Ω), and such

space is called Sobolev space. The norm in Wk,p(Ω) is defined as :

||u||Wk,p(Ω) =
( ∑
|α|≤k

∫
Ω
|∂αu|p dx

) 1
p

.

Throughout this paper, for p = 2 case, we use the convention Hk(Ω) denote

the space Wk,2(Ω). For more details, we refer to chapter 5, [6].

9



2.1. Definitions and Useful Theorems

2.1.3 Fourier Transform

In this paper we use the following convention for Fourier expansion on

Td:

f (x)= 1
(2π)d

∑
k∈Zd

f̂ (k)eik·x , f̂ (k)=
∫
Ω

f (x)e−ik·x dx .

By taking advantage of Fourier expansion, we use the equivalent Hs-norm

and Ḣs-norm of function f by

|| f ||Hs = 1
(2π)d/2

( ∑
k∈Zd

(1+|k|2s)| f̂ (k)|2
) 1

2

, || f ||Ḣs = 1
(2π)d/2

( ∑
k∈Zd

|k|2s| f̂ (k)|2
) 1

2

.

The equivalence of two norms are well known, we refer to Appendix A in [16].

2.1.4 Convergence of Fourier Series in Periodic Domains

Given f being a Lp(Td) periodic function for p > 1, and denote the Dirich-

let partial sum DN f := 1
(2π)d

∑
|k|≤N f̂ (k)eik·x, then

||DN f − f ||Lp(Td)) → 0 , and DN f → f pointwise almost everywhere . (2.2)

This was originally proved by Carleson in [3].

2.1.5 Uniform Boundedness Principle

Let X be a Banach space and Y be a normed vector space. Suppose that

F is a collection of continuous linear operator from X to Y . If for all x in X

one has

sup
T∈F

||T(x)||Y <∞ ,

10



2.1. Definitions and Useful Theorems

Then

sup
T∈F

||T|| <∞ where ||T|| is the operator norm.

We refer to a simple proof in [15].

2.1.6 Fixed-point Theorem

Given a Banach space (X , ||.||) and a contraction map T : X → X s.t ||T(x)−
T(y)|| ≤ β||x− y|| with 0 < β < 1, then there exists a fix-point x, s.t T(x) = x.

We refer to [1] for details.

2.1.7 Duhamel’s Formula

Consider a linear inhomogeneous evolution equation for a function u(x, t) :

Ω× (0,∞)→R, with a spatial domain Ω⊂Rd, of the form



ut(x, t)−Lu(x, t)= f (x, t) , (x, t) ∈Ω× (0,∞)

u|∂Ω = 0

u(x,0)= u0(x) , x ∈Ω ,

(2.3)

where L is a linear differential operator that involves no time derivatives

and the boundary condition could be replaced by periodic boundary condition.

Then formally, the solution to this equation system is:

u(x, t)= eLtu0 +
∫ t

0
eL(t−s) f ds (2.4)

where eLt is the homogeneous solution operator, or eLtu0 solves the homoge-

neous equation with initial data u0. In fact eLtu0 is often given as a convolu-

11



2.2. Several Important Inequalities

tion between a well-defined kernel and the initial data u0. For more details,

we refer to [6].

2.2 Several Important Inequalities

2.2.1 Hölder’s Inequality

Given f ∈ Lp(Ω) and g ∈ Lq(Ω), such that 1
p + 1

q = 1 then

|| f g||L1(Ω) ≤ || f ||Lp(Ω)||g||Lq(Ω).

2.2.2 Young’s Inequality

Given a,b, p, q positive real numbers, such that 1
p + 1

q = 1, then

ab ≤ ap

p
+ bq

q
.

2.2.3 Sobolev Inequality on Td

Note that the this Sobolev inequality is slightly different from the stan-

dard version. Let 0< s < d and f ∈ Lq(Td) for any d
d−s < p <∞, then

|| 〈∇〉−s f ||Lp(Td) .s,p,d || f ||Lq(Td) , where
1
q
= 1

p
+ s

d
.

Here 〈∇〉−s denotes (1−∆)−
s
2 , or on the Fourier side (1+|k|2)−

s
2 and A .s,p,d B

is defined as A ≤ Cs,p,d B where Cs,p,d is a constant dependent on s, p and d.

See [11] for the details.

12



2.2. Several Important Inequalities

2.2.4 Morrey’s Inequality on H2(Td)

Assume d ≤ 3 and f ∈ H2(Td) then

|| f ||∞(Td) . || f ||H2(Td) .

In fact stronger argument could be made with the help of Hölder space ar-

guments, but in this paper only the infinity norm is needed. More detailed

information is in chapter 5, [6].

2.2.5 Gagliardo–Nirenberg Interpolation Inequality

For functions u : Ω→ R defined on a bounded Lipschitz domain Ω ⊂ Rd,

fix 1≤ q, r ≤∞ and a natural number m. Suppose also that a real number α

and a natural number j are such that

1
p
= j

d
+

(
1
r
− m

d

)
α+ 1−α

q

and
j

m
≤α≤ 1 .

Then

||D ju||Lp ≤ C1(Ω)||Dmu||αLr ||u||1−αLq +C2(Ω)||u||Ls

where s > 0 is arbitrary.

13



2.3. the Main Lemma

2.2.6 Grönwall’s Inequality

On the interval I = [a,b] where a < b and b could be ∞. Let β and u be

real-valued continuous functions defined on I. If u is differentiable in (a,b)

and satisfies

u′(t)≤β(t)u(t) , t ∈ (a,b) ,

then

u(t)≤ u(a)exp
(∫ t

a
β(s) ds

)
, t ∈ [a,b] .

We refer to [7] for details.

2.2.7 Discrete Grönwall’s Inequality

Let τ> 0 and yn ≥ 0, αn ≥ 0, βn ≥ 0 for n = 1,2,3 · · · . Suppose

yn+1 − yn

τ
≤αn yn +βn , ∀ n ≥ 0 .

Then for any m ≥ 1, we have

ym ≤ exp

(
τ

m−1∑
n=0

αn

)(
y0 +

m−1∑
k=0

βk

)
.

The proof is given in [11].

2.3 the Main Lemma

For all f ∈ Hs(T2) , s > 1, then

|| f ||∞ ≤ Cs ·
(
|| f ||Ḣ1

√
log(|| f ||Ḣs +3)+| f̂ (0)|+1

)
. (2.5)
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2.3. the Main Lemma

Here Cs is a constant which only depends on s.

Proof. To prove the lemma, we write f (x) = 1
(2π)2

∑
k∈Z2 f̂ (k) eik·x, i.e. the

Fourier series of f , which is convergent pointwisely to f . So,

|| f ||∞ ≤ 1
(2π)2

∑
k∈Z2

| f̂ (k)|

≤ 1
(2π)2

(
| f̂ (0)|+ ∑

0<|k|≤N
| f̂ (k)|+ ∑

|k|>N
| f̂ (k)|

)

. | f̂ (0)|+ ∑
0<|k|≤N

(| f̂ (k)||k| · |k|−1)+ ∑
|k|>N

(| f̂ (k)||k|s · |k|−s)

. | f̂ (0)|+
( ∑

0<|k|≤N
| f̂ (k)|2|k|2

) 1
2

·
( ∑

0<|k|≤N
|k|−2

) 1
2

+
( ∑
|k|>N

| f̂ (k)|2|k|2s

) 1
2

· ( ∑
|k|>N

|k|−2s)
1
2

. | f̂ (0)|+ 1
Ns−1

( ∑
|k|>N

| f̂ (k)|2|k|2s

) 1
2

+
( ∑

0<|k|≤N
| f̂ (k)|2|k|2

) 1
2

·
√

log(N +3)

. | f̂ (0)|+ 1
Ns−1 || f ||Ḣs +

√
log(N +3)|| f ||Ḣ1 .

(2.6)

In the previous step, we use Hölder’s inequality for counting measure and

integral approximation of
∑

0<|k|≤N |k|−2 and
∑

|k|>N |k|−2s in Z2. To be more

clear, ∑
0<|k|≤N

|k|−2 .
∫ N

1

1
r2 ·2πr dr

.
∫ N

1

1
r

dr

. log(N +3) ,

(2.7)

∑
|k|>N

|k|−2s .
∫ ∞

N

1
r2s ·2πr dr

.
∫ ∞

N

1
r2s−1 dr

.
1

N2s−2 .

(2.8)
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2.3. the Main Lemma

If || f ||Ḣs ≤ 3, we could simply take N = 1; otherwise take Ns−1 close to

|| f ||Ḣs . For a similar lemma and proof, we refer to [12] and [11].
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Chapter 3

Stability of a First Order

Semi-implicit Scheme on 2D

Allen-Cahn Equation

Allen−Cahn equation is a ∆1 version of Cahn−Hilliard equation with

bilaplacian: 
∂tu = ν∆u− f (u)

u(x,0)= u0

.

Here f (u) = u3 − u, and the spatial domain Ω is often taken to be the

2π−periodic torus T2. Also we sometimes use ε2 instead of ν as ν is a small

parameter. The corresponding energy is defined by E(u)= ∫
Ω(ν2 |∇u|2+F(u)) dx

, where F(u)= 1
4 (u2 −1)2, the anti-derivative of f (u).

As is well known, the energy satisfies E(u(t)) ≤ E(u(s)) ,∀ t ≥ s, which

gives a priori bound. Now we consider a stabilized semi-implicit scheme in-

troduced in [11]. The form is the following:

17



3.1. Stability Theorem for Allen-Cahn Equation


un+1 −un

τ
= ν∆un+1 − A(un+1 −un)−ΠN f (un)

u0 =ΠN u0

. (3.1)

where τ is the time step and A > 0 is the coefficient for the O(τ) regularization

term. For N ≥ 2, define

XN = span
{
cos(k · x) ,sin(k · x) : k = (k1,k2) ∈Z2 , |k|∞ =max{|k1|, |k2|}≤ N

}
.

So define the L2 projection operator ΠN : L2(Ω) → XN by (ΠN u−u,φ) =
0 ∀φ ∈ XN , where (·, ·) denotes the L2 inner product on Ω. In other words,

the projection operator ΠN is just the truncation of Fourier modes |k|∞ ≤ N.

ΠN u0 ∈ XN and by induction, we have un ∈ XN ,∀n ≥ 0.

3.1 Stability Theorem for Allen-Cahn Equation

Theorem 3.1.1. (unconditional energy stability for AC). Consider (3.1) with

ν> 0 and assume u0 ∈ H2(T2). Then there exists a constant β0 depending only

on the initial energy E0 = E(u0) such that if

A ≥β · (||u0||2H2 +ν−1| logν|+1
)

, β≥β0 (3.2)

then E(un+1)≤ E(un), ∀n ≥ 0, where E is defined above.

Remark 2. Similar to [11], the stability result is valid for any time step τ.

Our choice of A is independent of τ as long as it has size of O (1/ν| log(ν)|) at

least. Note that the choice of A may not be optimal and further work could be

done.
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3.2. Proof of the Stability Theorem

Remark 3. The condition u0 ∈ H2(T2) results from the classic Sobolev embed-

ding supN ||ΠN u0||∞ . ||u0||H2(T2). No mean zero assumption is needed for u0 .

To prove this we need a log-type interpolation inequality, which is the

main lemma.

3.2 Proof of the Stability Theorem

The proof uses an induction argument. To start with, let’s recall the nu-

merical scheme (3.1)

un+1 −un

τ
= ν∆un+1 − A(un+1 −un)−ΠN f (un).

Here ΠN is truncation of Fourier modes of L2 functions to |k|∞ ≤ N. Mul-

tiply the equation by (un+1 −un) and integrate over Ω, one has

1
τ

∫
T2

|un+1−un|2 = ν

∫
T2
∆un+1(un+1−un)−A

∫
T2

|un+1−un|2−(
ΠN f (un),un+1 −un)

.

Because un is periodic, (as un ∈ XN ), hence by integration by parts, we have

(
1
τ
+ A)

∫
T2

|un+1 −un|2 +ν
∫
T2

∇un+1∇(un+1 −un)=−(
ΠN f (un),un+1 −un)

.

Note ∇un+1∇(un+1 −un)= 1
2 (|∇un+1|2 −|∇un|2 +|∇(un+1 −un)|2), we have

(
1
τ
+A)

∫
T2

|un+1−un|2+ν
2

∫
T2

|∇un+1|2−|∇un|2+|∇(un+1−un)|2 =−(
ΠN f (un),un+1 −un)

.
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3.2. Proof of the Stability Theorem

Moreover, every un ∈ XN , we have

(
1
τ
+A)

∫
T2

|un+1−un|2+ν
2

∫
T2

|∇un+1|2−|∇un|2+|∇(un+1−un)|2 =−(
f (un),un+1 −un)

.

(3.3)

Now, by fundamental theorem of calculus and integration by parts,

F(un+1)−F(un)= f (un)(un+1 −un)+
∫ un+1

un
f ′(s)(un+1 − s) ds

= f (un)(un+1 −un)+
∫ un+1

un
(3s2 −1)(un+1 − s) ds

= f (un)(un+1 −un)+ 1
4

(un+1 −un)2 (
3(un)2 + (un+1)2 +2unun+1 −2

)
.

(3.4)

Combine previous two equations, and denote E(un) by En we have

(
1
τ
+ A)||un+1 −un||2L2 + ν

2
||∇(un+1 −un)||2L2 + ν

2
||∇un+1||2L2 − ν

2
||∇un||2L2

+
∫
T2

F(un+1)−F(un)= 1
4

(
(un+1 −un)2,3(un)2 + (un+1)2 +2unun+1 −2

)
Note

ν

2
||∇un+1||2L2 +

∫
T2

F(un+1)= E(un+1)= En+1

=⇒ (
1
τ
+ A+ 1

2
)||un+1 −un||2L2 + ν

2
||∇(un+1 −un)||2L2 +En+1 −En

= 1
4

(
(un+1 −un)2,3(un)2 + (un+1)2 +2unun+1)

≤ ||un+1 −un||2L2

(
||un||2∞+ 1

2
||un+1||2∞

)
.

(3.5)

To show En+1 ≤ En, clearly it suffices to show

1
τ
+ A+ 1

2
≥ 3

2
max

{||un||2∞ , ||un+1||2∞
}

. (3.6)
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3.2. Proof of the Stability Theorem

Note that E0 = E(ΠN u0) while E0 = E(u0). In general E0 6= E0. In effect, we

claim that

Proposition 1.

sup
N

E(ΠN u0). 1+E0,where u0 ∈ H1(T2) . (3.7)

Proof. First, we write ΠN u0 as 1
(2π)2

∑
|k|≤N û0(k)eik·x , namely the Dirichlet

partial sum of u0.

||∇ (ΠN u0) ||2L2(T2) =
1

(2π)2

∑
|k|≤N

|k|2|û0(k)|2 ≤ 1
(2π)2

∑
|k|∈Z2

|k|2|û0(k)|2 = ||∇ (u0) ||2L2(T2) .

(3.8)

The first equality above is because the operator ΠN is just a truncation of

Fourier modes.

On the potential energy part, by standard Sobolev inequality, ||u0||L4(T2) .

||u0||H1(T2), this shows u0 ∈ L4(T2) and hence the Dirichlet partial sum ΠN u0

converges to u0 in L4(T2). Then, ||ΠN u0||L4(T2) → ||u0||L4(T2), which leads

to supN ||ΠN u0||L4(T2) < ∞. By Uniform Boundedness Principle, we derive

supN ||ΠN || < ∞, i.e. supN ||ΠN u0||L4(T2) ≤ c||u0||L4(T2) for an absolute con-

stant c. Combine two estimates above we conclude the proof for the claim.

For an alternate proof, see [10], and this claim holds for 3D case as well

with a similar proof.

We rewrite the numerical scheme (3.1) as following:

un+1 = 1+ Aτ
1+ Aτ−ντ∆un − τ

1+ Aτ−ντ∆ΠN [ f (un)] . (3.9)
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3.2. Proof of the Stability Theorem

By the lemma, to control ||un+1||∞ and ||un||∞, we may consider Ḣ1-norm

and Ḣ
3
2 -norm together with 0th-mode |ûn+1(0)|.

To start with,

|ûn+1(0)| ≤ |ûn(0)|+ τ

1+ Aτ
| f̂ (un)(0)|

≤ |ûn(0)|+ 1
A
| f̂ (un)(0)|

≤ |
∫
T2

un dx|+ |
∫
T2

un − (un)3 dx|

. 1+|
∫
T2

(un)2 dx| 1
2 +|

∫
T2

(1− (un)2)2 dx| 1
2

. 1+
p

En ,

(3.10)

where the last 2 inequalities are by Cauchy-Schwarz inequalities and Hölder’s

inequalities.

Lemma 3.2.1. There is an absolute constant c1 > 0 such that for any n ≥ 0


||un+1||

Ḣ
3
2 (T2)

≤ c1 ·
(

A+1
ν

+ 1
ντ

)
· (En +1)

||un+1||Ḣ1(T2) ≤
(
1+ 1

A
+ 3

A
||un||2∞

)
· ||un||Ḣ1(T2) .

(3.11)

Proof. As 0th-mode will not contribute to Ḣ1 norm and Ḣ
3
2 norm, we could

just consider Fourier modes |k| ≥ 1 from the Fourier side. Use the symbol

f . g to denote f ≤ c · g with c being a constant.


(1+ Aτ)|k| 3

2

1+ Aτ+ντ|k|2 .
1+ Aτ
ντ

τ|k| 3
2

1+ Aτ+ντ|k|2 .
τ

τν
|k|− 1

2 = 1
ν
|k|− 1

2 .

(3.12)
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3.2. Proof of the Stability Theorem

Hence

||un+1||
Ḣ

3
2 (T2)

.
(

1+ Aτ
ντ

)
||un||L2(T2) +

1
ν
||〈∇〉− 1

2 f (un)||L2(T2). (3.13)

Here the notaion
〈∇〉s = (1−∆)

s
2 , corresponds to the Fourier side (1+|k|2)s/2.

Note ||un||L2(T2) .
∫
T2

1
4 (u4 −2u2 +1) dx+1 . En +1 by Cauchy-Schwarz in-

equality. By Sobolev inequality ||〈∇〉− 1
2 f (un)||L2(T2) . || f (un)||

L
4
3 (T2)

= ||(un)3−

un||
L

4
3 (T2)

=
(∫
T2((un)3 −un)

4
3 dx

) 3
4 .

(∫
T2(un)4 dx

) 3
4 . En+1. Hence (3.13) be-

comes

||un+1||
Ḣ

3
2 (T2)

.
(

1+ Aτ
ντ

+ 1
ν

)
(En +1). (3.14)

Similarly, 
(1+ Aτ)|k|

1+ Aτ+ντ|k|2 . |k|
τ|k|

1+ Aτ+ντ|k|2 .
τ

τA
|k| = 1

A
|k| .

(3.15)

This implies

||un+1||Ḣ1(T2) . ||un||Ḣ1(T2) +
1
A
|| f (un)||Ḣ1(T2)

. ||un||Ḣ1(T2) +
1
A
||∇( f (un))||L2(T2)

. ||un||Ḣ1(T2) +
1
A
||(3(un)2 −1) · (∇un)||L2(T2)

. ||un||Ḣ1(T2) + (
1
A

+ 3||u||2∞
A

)||un||Ḣ1(T2)

.
(
1+ 1

A
+ 3||u||2∞

A

)
||un||Ḣ1(T2) .

(3.16)
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3.2. Proof of the Stability Theorem

Now we prove by induction.

Step 1: The induction n =⇒ n+ 1 step. Assume En ≤ En−1 ≤ ·· · ≤ E0

and En ≤ supN E(ΠN u0), we would show En+1 ≤ En. This implies ||un||2
Ḣ1 =

||∇un||2L2 ≤ 2En

ν
≤ 2E0

ν
.

So by the main lemma, use the notation f .E0 g to denote there exists a

constant C(E0) depends only on E0 such that f ≤ C(E0) · g, we have

||un||2∞ . ||un||2Ḣ1

(√
log(3+ c1

(
1
ντ

+ A+1
ν

)
(En +1))

)2

+En +1

.
2E0

ν

(
1+ log(A)+ log(

1
ν

)+ (log(1+ 1
τ

))
)
+E0 +1

.E0 ν−1
(
1+ log(A)+ log(

1
ν

)
)
+ν−1| log(τ)|+1 .

(3.17)

Define m0 := ν−1 (1+ log(A)+| log(ν)|), and note that E0 ≤ supN E(ΠN u0).

E0 +1, the inequality above is

||un||2∞ .E0 m0 +ν−1| log(τ)|+1. (3.18)
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3.2. Proof of the Stability Theorem

On the other hand,

||un+1||2∞ .
(
1+||un+1||Ḣ1

√
log(3+||un+1||

Ḣ
3
2
)
)2

.
(
1+ (

1+||un||2∞
A

)||un||Ḣ1

√
log(3+||un+1||

Ḣ
3
2
)
)2

.E0

(
1+ (1+ m0 +ν−1| log(τ)|

A
)(

√
1
ν

√
log(3+||un+1||

Ḣ
3
2
)

)2

.E0

(
1+ (1+ m0 +ν−1| log(τ)|

A
)(

√
m0 +ν−1| log(τ)|)

)2

.E0

(
1+

√
m0 +ν−1| log(τ)|+ (

√
m0 +ν−1| log(τ)|)3

A

)2

.E0 1+ m3
0

A2 +m0 +ν−3| log(τ)|3 .

(3.19)

Hence sufficient condition (3.6) becomes


A+ 1

2
+ 1
τ
≥ C(E0)

(
m0 +1+ m3

0

A2 +ν−3| log(τ)|3
)

m0 = ν−1 (1+ log(A)+| log(ν)|) .

(3.20)

We discuss two cases.

Case 1:1
τ
≥ C(E0)ν−3| log(τ)|3. In this case, we need to choose A such that

A ÀE0 m0 = ν−1 (1+ log(A)+| log(ν)|) .

In fact, for ν& 1 , we could take A ÀE0 1; if 0 < ν¿ 1, we would choose

A = CE0 · ν−1| logν| , where CE0 is a large constant depending only on E0.

Therefore in both cases it suffices to choose

A = CE0 ·max
{
ν−1| log(ν)| , 1

}
. (3.21)
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3.2. Proof of the Stability Theorem

Case 2:1
τ
≤ C(E0)ν−3| log(τ)|3. This implies | log(τ)|.E0 1+ | log(ν)|. Now

we go back to equations (3.17), we have

||un||2∞ .E0 m0, (3.22)

as ν−1| log(τ)| would be absorbed by m0, recall m0 = ν−1 (1+ log(A)+| log(ν)|).
Hence substitute this new bound to (3.19), we would get

||un+1||2∞ .
(
1+ (

1+||un||2∞
A

)||un||Ḣ1

√
log(3+||un+1||

Ḣ
3
2
)
)2

.E0

(
1+ (1+ m0

A
)
√

1
ν

√
log(3+||un+1||

Ḣ
3
2
)

)2

.E0

(
1+ (1+ m0

A
)
p

m0

)2

.E0 1+ m3
0

A2 +m0 .

(3.23)

This shows it suffices to take

A ≥ CE0 m0, (3.24)

for a large enough constant CE0 depending only on E0. The same choice

of A in Case 1( with a larger CE0 if necessary) would still work.

Step 2: check the induction base step n = 1. It’s clear that we only need

to check

A+ 1
2
+ 1
τ
≥ ||ΠN u0||2∞+ 1

2
||u1||2∞.
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3.2. Proof of the Stability Theorem

By the lemma 3.2.1,

||u1||Ḣ1 ≤
(
1+ 1

A
+ 3

A
||ΠN u0||2∞

)
· ||u0||Ḣ1

≤
(
1+ 1

A
+ 3

A
||ΠN u0||2∞

)
·
√

2E0

ν
.

(3.25)

As a result,

||u1||2∞ .
(
1+|û1(0)|+ ||u1||Ḣ1

√
log(3+||u1||

Ḣ
3
2
)
)2

.

1+
√

E0 +
(
1+ 1

A
+ 3

A
||ΠN u0||2∞

)√
2E0

ν

√
log

(
3+ c1

(
A+1
ν

+ 1
ντ

)
(E0 +1)

)2

.E0

(
1+

(
1+ 1

A
+ 3

A
||ΠN u0||2∞

)
·ν− 1

2 ·
√

1+ log(A)+| log(ν)|+ | log(τ)|
)2

.E0

(
1+ 1

A
+ 3

A
||ΠN u0||2∞

)2
·ν−1 · (1+ log(A)+| log(ν)|+ | log(τ)|) .

(3.26)

Thus we need to choose A such that

A+ 1
2
+ 1
τ
≥ ||ΠN u0||2∞+CE0 ·

(
1+ 1

A
+ 3

A
||ΠN u0||2∞

)2
·ν−1

· (1+ log(A)+| log(ν)|+ | log(τ)|) ,

(3.27)

where CE0 is a large constant depending only on E0. Note that by Morrey’s

inequality for 2D domains,

||ΠN u0||L∞(T2) . ||ΠN u0||H2(T2) . ||u0||H2(T2).

Then it suffices to take A s.t.

A ÀE0 ||u0||2H2 +ν−1| log(ν)|+1 . (3.28)
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3.2. Proof of the Stability Theorem

This completes the induction and hence the theorem.
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Chapter 4

L2 Error Estimate of the First

Order Scheme on 2D

Allen-Cahn Equation

In this chapter, we would like to study the L2 error between the semi-

implicit numerical solution and the exact PDE solution in the domain T2. To

start with, we consider the auxiliary L2 error estimate for near solutions.

4.1 Auxiliary L2 Error Estimate for Near Solutions

Consider the following system:



un+1 −un

τ
= ν∆un+1 −ΠN f (un)− A(un+1 −un)+G1

n

vn+1 −vn

τ
= ν∆vn+1 −ΠN f (vn)− A(vn+1 −vn)+G2

n

u0 = u0 , v0 = v0

(4.1)

where we would denote Gn =G1
n −G2

n.

We state the proposition here.
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4.1. Auxiliary L2 Error Estimate for Near Solutions

Proposition 2. For solutions of (4.1), assume for some N1 > 0,

sup
n≥0

||un||∞+sup
n≥0

||vn||∞ ≤ N1 . (4.2)

Then for any m ≥ 1,

||um −vm||2L2 = ||em||2L2

≤ exp

(
mτ ·

{
C

(
(1+N2

1 )N1

ν
+N2

1 +ν(1+N2
1 )N1

)
+ B
ν

})

·
(
(1+ Aτ) ||u0 −v0||2L2 +Bτν

m−1∑
n=0

||Gn||2L2

) (4.3)

where B , C > 0 are two absolute constants.

Proof. Write en = un −vn. Then

en+1 − en

τ
= ν∆en+1 − A(en+1 − en)−ΠN

(
f (un)− f (vn)

)+Gn . (4.4)

Take the L2 inner product with en+1 on both sides and recall similar compu-

tations in chapter 3, one has

1
2τ

(||en+1||2L2 −||en||2L2 +||en+1 − en||2L2

)+ν||∇en+1||2L2 + A
2

(||en+1||2L2 −||en||2L2+

||en+1 − en||2L2)= (
Gn, en+1)+ (

f (un)− f (vn), ΠN en+1)
(4.5)

where (. , .) denotes the L2 inner product and the last term is because ΠN is

a self-adjoint operator (ΠN f , g) = ( f , ΠN g), since it is just an N-th Fourier

mode truncation.
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4.1. Auxiliary L2 Error Estimate for Near Solutions

Now by Hölder’s inequality

|(Gn, en+1) | ≤ ||en+1||L2 ||Gn||L1 ≤ B||en+1||L2 ||Gn||L2 ≤ 2B

(
ν||Gn||2L2 +

||en+1||2L2

ν

)
(4.6)

Next, by fundamental theorem of calculus, we compute

f (un)− f (vn)=
∫ 1

0
f ′(vn + sen)ds en

= (a1 +a2(vn)2)en +a3vn(en)2 +a4(en)3 ,
(4.7)

where ai are constants could be computed. Now we shall denote by C an

absolute constant whose value may vary in different lines. Now,

|((a1 +a2(vn)2)en , en+1) | ≤ C(1+||vn||2∞)||en+1||L2 ||en||L2

≤ C(1+N2
1 )N1(

||en+1||2L2

ν
+ν||en||2L2)

≤ C(1+N2
1 )N1

ν
||en+1||2L2 +ν ·C(1+N2

1 )N1||en||2L2 ,
(4.8)

also,

|(a3vn(en)2 , en+1) | ≤ C||vn||∞||en+1||∞||en||2L2

≤ CN2
1 ||en||2L2 ,

(4.9)

|(a4(en)3 , en+1) | ≤ C||en+1||∞||en||∞||en||2L2

≤ CN2
1 ||en||2L2 .

(4.10)

To simplify the formula, we would use the notation ||u||2 to denote the L2

norm. Collecting all estimates, we get
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4.1. Auxiliary L2 Error Estimate for Near Solutions

||en+1||22 −||en||22
τ

+ A(||en+1||22 −||en||22)≤ Bν||Gn||22 +
B
ν
||en+1||22

C
(
ν(1+N2

1 )N1 +N2
1
) ||en||22 +

C(1+N2
1 )N1

ν
||en+1||22

(4.11)

where B and C are two absolute constants that could be computed exactly.

Hence for ν small, recall A is chosen large than O(ν−1| logν|), we derive

||en+1||22 −||en||22
τ

+
(

A− C(1+N2
1 )N1

ν
− B
ν

)
(||en+1||22 −||en||22)≤ Bν||Gn||22+{

C

(
(1+N2

1 )N1

ν
+N2

1 +ν(1+N2
1 )N1

)
+ B
ν

}
||en||22

(4.12)

Define

yn =
(
1+

(
A− C(1+N2

1 )N1

ν
− B
ν

)
τ

)
||en||22 ,

α= C

(
(1+N2

1 )N1

ν
+N2

1 +ν(1+N2
1 )N1

)
+ B
ν

,

βn = Bν||Gn||22 .

(4.13)

This shows for ν small,

yn+1 − yn

τ
≤αyn +βn .

Applying discrete Gronwall’s inequality, we have
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

||um −vm||22 = ||em||22 ≤ ym ≤ exp

(
mτ ·

{
C

(
(1+N2

1 )N1

ν
+N2

1 +ν(1+N2
1 )N1

)
+ B
ν

})

·
((

1+
(

A− C(1+N2
1 )N1

ν
− B
ν

)
τ

)
||u0 −v0||22 +Bτν

m−1∑
n=0

||Gn||22
)

≤ exp

(
mτ ·

{
C

(
(1+N2

1 )N1

ν
+N2

1 +ν(1+N2
1 )N1

)
+ B
ν

})

·
(
(1+ Aτ) ||u0 −v0||22 +Bτν

m−1∑
n=0

||Gn||22
)

.

(4.14)

4.2 L2 Error Estimate of 2D Allen-Cahn Equation

In this section, to simplify the notation, we would write x . y if x ≤
C(ν , u0) y for a constant C depending on ν and u0. We consider the sys-

tem 

un+1 −un

τ
= ν∆un+1 −ΠN f (un)− A(un+1 −un)

∂tu = ν∆u− f (u)

u0 =ΠN u0 , u(0)= u0 .

(4.15)

Theorem 4.2.1. Let ν > 0. Let u0 ∈ Hs, s ≥ 4 and u(t) be the solution to

Allen-Cahn equation with initial data u0. Let un be the numerical solution

with initial data ΠN u0. Assume A satisfies the same condition in the stability

theorem. Define tm = mτ, m ≥ 1. Then

||um −u(tm)||2 ≤ A · eC1 tm ·C2 ·
(
N−s +τ) ,
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

where C1 > 0 depends only on (u0,ν) and C2 depends on (u0,ν, s).

In order to prove this theorem, it is clear that we shall estimate Gn in

previous proposition. Note that for a one-variable function h(t), one has the

formula:


1
τ

∫ tn+1

tn

h(t)= h(tn)+ 1
τ

∫ tn+1

tn

h′(t) · (tn+1 − t) dt

1
τ

∫ tn+1

tn

h(t)= h(tn+1)+ 1
τ

∫ tn+1

tn

h′(t) · (tn − t) dt .
(4.16)

Using the formula above and integrating Allen-Cahn equation on the time

interval [tn , tn+1], we get

u(tn+1)−u(tn)
τ

=

ν∆u(tn+1)− A (u(tn+1)−u(tn))−ΠN f (u(tn))−Π>N f (u(tn))+Gn

(4.17)

where Π>N = id−ΠN , the large mode truncation and

Gn = ν

τ

∫ tn+1

tn

∂t∆u · (tn − t) dt− 1
τ

∫ tn+1

tn

∂t( f (u))(tn+1 − t) dt+ A
∫ tn+1

tn

∂tu dt .

(4.18)

To bound ||Gn||2, we introduce some useful lemmas.

4.2.1 Bounds on Allen-Cahn Exact Solution and Numerical

Solution

Lemma 4.2.2. (maximum principle for smooth solutions to Allen-Cahn equa-

tion) Let T > 0 and assume u ∈ C2
xC1

t (Td × [0,T]) is a classical solution to
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

Allen-Cahn equation with initial data u0. Then

||u(. , t)||∞ ≤max{||u0||∞ , 1} , ∀0≤ t ≤ T . (4.19)

Remark 4. As proved in [5], there exists a global H4
xC1

t solution to Allen-Cahn

equation. In fact as pointed out by Li, Qiao and Tang in [12], the regularity

would be even higher due to the smoothing effect of heat kernel and the non-

linear term. So we would assume a smooth solution here.

Proof. We define f (x, t) = u(x, t)2 and f ε(x, t) = f (x, t)− εt. Since f ε is a con-

tinuous function on the compact domain Td × [0,T], it achieves maximum at

some point (x∗, t∗), i.e.

max
0≤t≤T , x∈Td

f ε(x, t)= f ε(x∗, t∗) := Mε .

We discuss several cases.

Case 1. 0< t∗ ≤ T and Mε> 1. This shows ∇ f ε(x∗, t∗)= 0 , ∆ f ε(x∗, t∗)≤ 0.

Note that

∇ f ε = 2u∇u , ∆ f ε = 2|∇u|2 +2u∆u , (4.20)

this shows ∇u(x∗, t∗)= 0, u∆u(x∗, t∗)< 0.
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

However,

∂t f ε(x∗, t∗)= 2u(x∗, t∗)∂tu(x∗, t∗)−ε

= 2u(x∗, t∗)(ν∆u(x∗, t∗)−u3(x∗, t∗)+u(x∗, t∗))−ε

<−2u4(x∗, t∗)+2u2(x∗, t∗)−ε

<−2(u2(x∗, t∗)− 1
2

)2 + 1
2
−ε

<−ε< 0

(4.21)

as u2(x∗, t∗) > 1 by assumption. This contradicts the hypothesis that f ε

achieves its maximum at (x∗, t∗) and hence Case 1 is impossible.

Case 2. 0< t∗ ≤ T and Mε≤ 1. In this case we obtain

max
0≤t≤T , x∈Td

f (x, t)≤ 1+εT ,

letting ε→ 0, we obtain f (x, t)≤ 1.

Case 3. t∗ = 0, then

max
0≤t≤T , x∈Td

f (x, t)≤max
x∈Td

f (x,0)+εT ,

sending ε to 0, we obtain f (x, t)≤ f (x,0).

This concludes ||u||∞ ≤max{||u0||∞ , 1}.

Lemma 4.2.3. (Hk boundedness of exact solution) Assume u(x, t) is a smooth

solution to Allen-Cahn equation in Td with d ≤ 3 and the initial data u0 ∈
Hk(Td) for k ≥ 2. Then,

sup
t≥0

||u(t)||Hk(Td) .k 1 (4.22)
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

where we omits the dependence on ν and u0.

Proof. By the Duhamel formula, we write

u(t)= eνt∆u0 +
∫ t

0
eν(t−s)∆(u−u3) ds . (4.23)

We would prove this argument inductively. By previous lemma, we have

||u||2 . 1 as ||u||∞ . 1 and we would show ||u||H1 . 1 for any t ≥ 1. Then by

taking spatial derivative and L2 norm in the formula above, we derive

||Du||2 ≤ ||Deνt∆u0||2 +
∫ t

0
||Deν(t−s)∆(u−u3)||2 ds (4.24)

where Du denotes any differential operator Dαu for any |α| = 1, for example

D2 denotes ∂2
xi x j

u for 1≤ i , j ≤ d.

First, we consider the nonlinear part.

||Deν(t−s)∆(u−u3)||2 . ||Deν(t−s)∆(u−u3)||∞ . |K1 ∗ (u−u3)| , (4.25)

where K1 is the kernel corresponding to Deν(t−s)∆.

|K1 ∗ (u−u3)| ≤ ||K1||2 · ||u−u3||2

. ||K1||2 · ||u||2
(4.26)
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

by the boundedness of ||u||∞. Note that

||K1||2 .
( ∑

k∈Zd

|k|2e−2ν(t−s)|k|2
) 1

2

=
( ∑
|k|≥1

|k|2e−2ν(t−s)|k|2
) 1

2

.
(∫ ∞

1
e−2ν(t−s)r2

rd+1 dr
) 1

2
.

(4.27)

The estimate for even dimensional case and odd dimensional case is a bit

different. Now we would assume t ≥ 1, as the other case t < 1 is much easier.

1. Case 1, d = 1.
∫ ∞

1 e−2ν(t−s)r2
r2 dr . e−2ν(t−s)

t−s + erfc(
p

2ν(t−s))
(t−s)3/2 , where erfc(x) :=

2p
π

∫ ∞
x e−t2

dt, the complementary error function. Letting γ= t− s,

∫ t

0
||Deν(t−s)∆u||2 ds.

(∫ t

0

e−νγ

γ1/2 + (erfc(pνγ)1/2

γ3/4 dγ

)
· ||u||2 . (4.28)

For γ close to 0, (erfc(pνγ)1/2

γ3/4 will dominate the estimate and for γ away

from 0, e−νγ
γ1/2 shall dominate the estimate. Then we split the integral as

following (recall t ≥ 1):

∫ t

0

e−νγ

γ1/2 + (erfc(pνγ)1/2

γ3/4 dγ.
∫ 1

0

1
γ3/4 dγ+

∫ t

1

e−νγ

γ1/2 dγ

. 1+
∫ ∞

0

e−νγ

γ1/2 dγ

. 1 .

(4.29)

2. Case 2, d = 2.
∫ ∞

1 e−2ν(t−s)r2
r3 dr . e−2ν(t−s)

(t−s)2 + e−2ν(t−s)

t−s . Similar to case 1,
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we would split the integral as well. Letting γ= t− s, we have

∫ t

1

e−νγ

γ
+ e−νγ

γ1/2 dγ.
∫ t

1

e−νγ

γ1/2 dγ

.
∫ ∞

0

e−νγ

γ1/2 dγ

. 1 .

(4.30)

However, it does not work for γ ≤ 1. Now we use another estimate for

||K1 ∗ (u−u3)||L2(Td). We compute from Fourier side:

||K1 ∗ (u−u3)||2L2(Td) =
∑
|k|≥1

|k|2e−2ν(t−s)|k|2 |àu−u3(k)|2

≤max
|k|≥1

{
|k|2e−2ν(t−s)|k|2

}
· ∑
|k|≥1

|àu−u3(k)|2

.max
|k|≥1

{
|k|2e−2ν(t−s)|k|2

}
· ||u||2L2(Td) .

(4.31)

Define g(x)= x2e−2νγx2
, where x ≥ 0. Then,

g′(x)= 2xe−2νγx2 (
1−2νγx2)

, (4.32)

this shows the maximum achieves at x = 1p
2νγ

and hence

g(x)≤ g(
1√
2νγ

).
1
γ

(4.33)

and hence

||Deν(t−s)∆(u−u3)||L2(Td) .
1p
t− s

||u||L2(Td) , (4.34)
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note that this proof works for any dimension.

As a result,

∫ 1

0
||Deνγ∆u||2 dγ.

∫ 1

0

1p
γ

dγ · ||u||2 . 1 . (4.35)

This shows
∫ t

0 ||Deν(t−s)∆u||2 ds. 1.

3. Case 3, d = 3. As proved in previous case, we would only need to check

the case γ≥ 1.
∫ ∞

1 e−2νγr2
r4 dr . e−2νγ

γ
for γ≥ 1. Hence,

∫ t

1

e−νγ

γ1/2 dγ.
∫ ∞

0

e−νγ

γ1/2 dγ

. 1 .

(4.36)

For t ≤ 1 case, it is easier because we do not need to split the integral and all

integrals from 0 to t could be bounded by the integral from 0 to 1.

Now for the linear part, by Duhamel’s Principle, eνt∆u0 denotes the solu-

tion to the system: 
∂tu = ν∆u

u(x,0)= u0 .
(4.37)

As is well known, every spatial derivative of the solution eνt∆u0 solves

same PDE, hence by the energy decay property, we have ||eνt∆u0||Hm . ||u0||Hm

for any 1 ≤ m ≤ k. Combine the nonlinear part and linear part, we derive

||u||H1 . 1 independent of t ≥ 0 and hence supt≥0 ||u||H1 . 1.
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Now if we already obtain supt≥0 ||u||Hm−1 . 1, we just need to consider

||D(Dm−1u)||2 ≤ ||Deνt∆Dm−1u0||2 +
∫ t

0
||Deν(t−s)∆Dm−1u||2 ds

. ||u0||Hm +
∫ 1

0
||Deνγ∆Dm−1u||2 dγ+

∫ t

1
||Deνγ∆Dm−1u||2

. 1+
∫ 1

0

1p
γ

dγ · ||Dm−1u||2 +
∫ ∞

0

e−νγp
γ

dγ · ||Dm−1u||2

. 1 ,
(4.38)

by repeating the process above. In the end we would achieve

sup
t≥0

||u||Hk(Td) .k 1 . (4.39)

Lemma 4.2.4. (Discrete version Hk boundedness) Suppose u0 ∈ Hk(Td) with

d ≤ 3 and k ≥ 2. Then, suppose un is the numerical solution that satisfies


un+1 −un

τ
= ν∆un+1 − A(un+1 −un)−ΠN f (un)

u0 =ΠN u0 ,
(4.40)

then

sup
n≥0

||un||Hk(Td) .A,k 1 . (4.41)

Remark 5. The bound on un is independent of time step τ and truncation

number N.

Remark 6. The proof is involved with energy decay property of the numerical

scheme, so we would assume this property for now, as the proof for energy
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decay in 3D case would be given in chapter 6.

Proof. To simplify the notation, we would use “.” instead of “.ν,u0,A,k” only

in this lemma. We would like to use a similar method provided in [10].

Write

un+1 = 1+ Aτ
1+ Aτ−ντ∆︸ ︷︷ ︸

:=L1

un + −τΠN

1+ Aτ−ντ∆︸ ︷︷ ︸
:=L2

f (un)

= L1
(
L1un−1 +L2 f (un−1)

)+L2 f (un)

= Lm0+1
1 un−m0 +

m0∑
l=0

Ll
1L2 f (un−1) ,

(4.42)

where m0 would be chosen later.

Similar to continuous version, we prove inductively. First, we show

sup
n≥0

||un||H2(Td) . 1 . (4.43)

Recall supn≥0 ||un||2 . 1 and supn≥0 || f (un)||2 . 1 by energy decay property,

then we just need to consider Ḣ2 semi norm.

We discuss 3 cases:

1. Case 1: τ≥ 1
10 . Then for each 0 6= k ∈Zd,

∣∣L̂1(k)
∣∣= 1+ Aτ

1+ Aτ+ντ|k|2

≤ 1
Aτ+ντ|k|2 + A

A+ν|k|2

.
1

1+|k|2 ;

(4.44)

∣∣L̂2(k)
∣∣≤ τ

Aτ+ντ|k|2 .
1

1+|k|2 . (4.45)
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As a result,

||un+1||Ḣ2 ≤ ||L1un||Ḣ2 +||L2 f (un)||Ḣ2

. ||un||2 +|| f (un)||2

. 1 .

(4.46)

2. Case 2: τ< 1
10 and Aτ≥ 1

10 . Then for 0 6= k ∈Zd:

∣∣L̂1(k)
∣∣= 1+ Aτ

1+ Aτ+ντ|k|2

≤ 11Aτ
Aτ+ντ|k|2

.
1

1+|k|2 ,

(4.47)

and ∣∣L̂2(k)
∣∣= τ

1+ Aτ+ντ|k|2 .
1

1+|k|2 . (4.48)

Then similar to Case 1,

||un+1||Ḣ2 ≤ ||L1un||Ḣ2 +||L2 f (un)||Ḣ2

. ||un||2 +|| f (un)||2

. 1 .

(4.49)

3. Case 3: τ < 1
10 but Aτ < 1

10 . Take m0 to be one integer such that 1
2 ≤
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m0τ< 1 and thus m0 ≥ 5.

∣∣∣àLm0+1
1 (k)

∣∣∣≤ (
1+ Aτ

1+ Aτ+ντ|k|2
)m0+1

≤
(

1+ Aτ
1+ Aτ+ντ|k|2

)m0

=
(
1+ ντ|k|2

1+ Aτ

)−m0

.

(4.50)

Recall Aτ< 1
10 < 1, then

(
1+ ντ|k|2

1+ Aτ

)−m0

≤
(
1+ ντ|k|2

2

)−m0

, (4.51)

define t0 := m0τ and we derive

∣∣∣àLm0+1
1 (k)

∣∣∣≤ (
1+ 1

2
ν|k|2 t0

m0

)−m0

. (4.52)

For any a > 0, we consider the function h(x)=−x log
(
1+ a

x
)
, x > 0. Then

h′(x)=− log
(
1+ a

x

)
+ a

a+ x

h′′(x)= a
x+a

(
1
x
− 1

x+a

)
> 0 .

(4.53)

By direct computation, h(x) decreases on (0,∞). Therefore, recalling

m0 ≥ 5,

∣∣∣àLm0+1
1 (k)

∣∣∣≤ (
1+ 1

2
ν|k|2 t0

m0

)−m0

≤
(
1+ 1

2
ν|k|2 · t0

5

)−5
. (4.54)

Now,
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∣∣L̂2(k)
∣∣ · m0∑

l=0

∣∣L̂1(k)
∣∣l ≤ ∣∣L̂2(k)

∣∣ · 1

1− ∣∣L̂1(k)
∣∣

= τ

1+ Aτ+ντ|k|2 · 1

1− 1+Aτ
1+Aτ+ντ|k|2

= 1
ν|k|2

.
1

|k|2 .

(4.55)

Therefore for n ≥ m0,

||un+1||Ḣ2 . ||un−m0 ||2 + sup
0≤l≤m0

|| f (un−l)||2 . 1 . (4.56)

For 1≤ n ≤ m0 +1, then we apply

un = Ln
1 u0 +

n−1∑
l=0

Ll
1L2 f (un−1−l) . (4.57)

Hence

||un||Ḣ2 . ||u0||Ḣ2 + sup
0≤l≤n−1

|| f (un−l−1)||2 . 1 . (4.58)

This concludes

sup
n≥0

||un||H2(Td) . 1 . (4.59)
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Inductively,



||un+1||Ḣm . ||un||Ḣm−2 +|| f (un)||Ḣm−2 , τ≥ 1
10

||un+1||Ḣm . ||un||Ḣm−2 +|| f (un)||Ḣm−2 , τ< 1
10

, Aτ≥ 1
10

||un+1||Ḣm . ||un−m0 ||Ḣm−2 + sup
0≤l≤m0

|| f (un−l)||Ḣm−2 , τ< 1
10

, Aτ< 1
10

, n ≥ m0

||un||Ḣm . ||u0||Ḣm + sup
0≤l≤n−1

|| f (un−l−1)||Ḣm−2 , τ< 1
10

, Aτ< 1
10

, n ≤ m0 +1

(4.60)

thus prove

sup
n≥0

||un||Hk(Td) . 1 . (4.61)

Remark 7. The proof for exact solution and numerical solution is similar in

the sense that we develop bootstrap process and split the time interval.

4.2.2 Proof of L2 Error Estimate of 2D Allen-Cahn Equation

Proof. By the previous high Sobolev bound lemma, supn≥0 ||un||∞ . 1 using

Morrey’s inequality. Thus the assumptions of proposition 2 (auxiliary L2 er-

ror estimate proposition) are satisfied.

Recall that

Gn = ν

τ

∫ tn+1

tn

∂t∆u · (tn − t) dt− 1
τ

∫ tn+1

tn

∂t( f (u))(tn+1 − t) dt+ A
∫ tn+1

tn

∂tu dt .

(4.62)
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Then

||Gn||2 .
∫ tn+1

tn

||∂t∆u||2 dt+
∫ tn+1

tn

||∂t( f (u))||2 dt+ A
∫ tn+1

tn

||∂tu||2 dt

.
∫ tn+1

tn

||∂t∆u||2 dt︸ ︷︷ ︸
I1

+
∫ tn+1

tn

||∂tu||2 dt · (A+|| f ′(u)||L∞
t L∞

x

)
︸ ︷︷ ︸

I2

.
(4.63)

Note that ∂tu = ν∆u−u+u3 and hence by high Sobolev bound lemma,

||∂tu||2 . 1 , || f ′(u)||∞ . 1 . (4.64)

Recall the energy decay property,

dE
dt

= d
dt

(∫
ν|∇u|2

2
+F(u) dx

)
=

∫
ν∇u ·∇∂tu+ f (u) ·∂tu dx

=
∫

(−ν∆u+ f (u))∂tu dx

=−||∂tu||22 .

(4.65)

This shows ∫ ∞

0
||∂tu||22 dt. 1 . (4.66)

Note that by Gagliardo–Nirenberg interpolation inequality,

||∂t∆u||2 . ||〈∇〉3
∂tu||

2
3
2 · ||∂tu||

1
3
2 . ||∂tu||

1
3
2 . (4.67)

Here the notaion
〈∇〉s = (1−∆)

s
2 , corresponds to the Fourier side (1+|k|2)s/2.
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

This implies

∫ ∞

0
||∂t∆u||62 dt. 1 ,

=⇒
∫ T

0
||∂t∆u||22 dt.

(∫ T

0
||∂t∆u||62 dt

) 1
3

·
(∫ T

0
1 dt

) 2
3

. 1+T
2
3 .

(4.68)

Moreover,

I1 =
∫ tn+1

tn

||∂t∆u||2 dt.
(∫ tn+1

tn

||∂t∆u||22 dt
) 1

2

·pτ . (4.69)

Similarly,

I2 . (1+ A) ·
∫ tn+1

tn

||∂tu||2 dt. (1+ A) ·
(∫ tn+1

tn

||∂tu||22 dt
) 1

2

·pτ . (4.70)

Hence for tm ≥ 1,

m−1∑
n=0

||Gn||22 .
m−1∑
n=0

(
(I1)2 + (I2)2)

.
m−1∑
n=0

(
τ

∫ tn+1

tn

||∂t∆u||22 dt+ (1+ A)2τ

∫ tn+1

tn

||∂tu||22 dt
)

. τ

∫ tm

0
||∂t∆u||22 dt+ (1+ A)2τ

∫ tm

0
||∂tu||22 dt

. τ(1+ tm)+ (1+ A)2τ

. (1+ A)2τ · (1+ tm) .

(4.71)

On the other hand, by the high Sobolev bound lemma supt≥0 ||u(t)||Hs .s

1, we have supn≥0 || f (u(tn))||Hs .s 1.
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

||Π>N f (u(tn))||22 =
∑

|k|>N

∣∣∣ áf (u(tn))(k)
∣∣∣2

≤ ∑
|k|>N

|k|2s
∣∣∣ áf (u(tn))(k)

∣∣∣2 · |k|−2s

. N−2s · ∑
|k|>N

|k|2s
∣∣∣ áf (u(tn))(k)

∣∣∣2
. N−2s · || f (u(tn))||2Hs

. N−2s ,

(4.72)

thus
m−1∑
n=0

||Π>N f (u(tn))||22 .s m ·N−2s .
tmN−2s

τ
. (4.73)

Therefore,

τ
m−1∑
n=0

(||Gn||22 +||Π>N f (u(tn))||22
)
.s (1+ tm)(τ2 +N−2s)(1+ A)2 . (4.74)

Also for the same reason

||u0 −u(0)||22 = ||ΠN u0 −u0||22 . N−2s . (4.75)

Applying the auxiliary solutions proposition and note that tm = mτ,

||um −u(tm)||22 .s (1+ A)2eCtm
(
N−2s +τ ·N−2s + (1+ tm)(τ2 +N−2s)

)
. (4.76)

Note that 
τ ·N−2s . τ2 +N−4s . τ2 +N−2s

1+ tm . eC′ tm ,
(4.77)
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4.2. L2 Error Estimate of 2D Allen-Cahn Equation

this leads to

||um −u(tm)||22 .s (1+ A)2eCtm
(
N−2s +τ2)

. (4.78)

Thus

||um −u(tm)||2 ≤ (1+ A) ·C2 · eC1 tm
(
N−s +τ) , (4.79)

where C1 > 0 is a constant depending on ν ,u0; C2 > 0 is a constant depending

on s ,ν and u0.

This completes the proof of L2 error estimate.
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Chapter 5

Stability of a First Order

Semi-implicit Scheme on 2D

Fractional Cahn-Hilliard

Equation

As mentioned in the introduction, the fractional Cahn-Hilliard equation

are “interpolation” between Allen-Cahn equation and original Cahn-Hilliard

equation. 
∂tu = ν∆

(
(−∆)αu+ (−∆)α−1 f (u)

)
, 0<α≤ 1

u(x,0)= u0

.

As before, we consider the region as 2π-periodic torus T2 = R2/2πZ2. f (u) =
u3−u and hence the energy E(u)= ∫

T2

(
ν
2 |∇u|2 +F(u)

)
dx , with F(u)= 1

4 (u2−
1)2. Similarly, the semi-implicit scheme is given by the following:


un+1 −un

τ
=−ν(−∆)α+1un+1 − (−∆)αA(un+1 −un)− (−∆)αΠN f (un)

u0 =ΠN u0

. (5.1)
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Chapter 5. Stability of a First Order Semi-implicit Scheme on 2D Fractional Cahn-Hilliard Equation

Theorem 5.0.1. (unconditional energy stability for fractional CH). Consider

(5.1) with ν > 0 and assume u0 ∈ H2(T2) and has zero-mean condition. Then

there exists a constant β0 depending only on the initial energy E0 = E(u0) such

that if

A ≥β · (||u0||2H2 +ν−1| logν|+1
)

, β≥β0 (5.2)

then E(un+1)≤ E(un), ∀n ≥ 0, where E is defined above.

Remark 8. Here we require zero-mean assumption on u0 hence that implies

un all have mean zero because zero-mean assumption would guarantee that

negative fractional Laplacian is well defined. Here we use the notation |∇|−α =
(−∆)−

α
2 to denote the fractional Laplacian.

Proof. The proof is involved with similar computation given in previous chap-

ter. We recall the scheme (5.1):

un+1 −un

τ
=−ν(−∆)α+1un+1 − (−∆)αA(un+1 −un)− (−∆)αΠN f (un) .

Now we multiply the equation by (−∆)−α(un+1 − un) and apply Funda-

mental Theorem of Calculus and integration by parts as in Chapter 3, we

obtain

1
τ

∣∣∣∣|∇|−α(un+1 −un)
∣∣∣∣2

L2 + ν

2

(∣∣∣∣∇(un+1 −un)
∣∣∣∣2

L2 +
∣∣∣∣∇un+1∣∣∣∣2

L2 −
∣∣∣∣∇un∣∣∣∣2

L2

)
+A

∣∣∣∣un+1 −un∣∣∣∣2
L2 =−(

f (un),un+1 −un)
.

(5.3)
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This thus implies:

1
τ

∣∣∣∣|∇|−α(un+1 −un)
∣∣∣∣2

L2 + ν

2

∣∣∣∣∇(un+1 −un)
∣∣∣∣2

L2 +
(
A+ 1

2

)∣∣∣∣un+1 −un∣∣∣∣2
L2 +En+1 −En

≤ ∣∣∣∣un+1 −un∣∣∣∣2
L2

(
||un||2∞+ 1

2
||un+1||2∞

)
.

(5.4)

It is clear that the first two norms 1
τ

∣∣∣∣|∇|−α(un+1 −un)
∣∣∣∣2

L2 and ν
2

∣∣∣∣∇(un+1 −un)
∣∣∣∣2

L2

would be problematic as we would expect more help from ||un+1 −un||2L2 .

Lemma 5.0.2.

1
τ

∣∣∣∣|∇|−α(un+1 −un)
∣∣∣∣2

L2(T2) +
ν

2

∣∣∣∣∇(un+1 −un)
∣∣∣∣2

L2(T2) ≥ Cαντ||un+1 −un||2L2(T2)

(5.5)

with Cαντ is determined by α, ν and τ.

Proof. It is natural to examine the above norms 1
τ

∣∣∣∣|∇|−α(un+1 −un)
∣∣∣∣2

L2(T2)

and

ν
2

∣∣∣∣∇(un+1 −un)
∣∣∣∣2

L2(T2) on the Fourier side. Then we obtain that

1
τ

∑
k 6=0

|k|−2α|ûn+1(k)− ûn(k)|2 + ν

2

∑
k 6=0

|ûn+1(k)− ûn(k)|2

= ∑
k 6=0

|ûn+1(k)− ûn(k)|2 ·
( |k|−2α

τ
+ ν|k|2

2

)
.

(5.6)

Note we expect
∑

k 6=0 |ûn+1(k)− ûn(k)|2, it is clear we could apply standard

Young’s inequality for product : ab ≤ aγ
γ
+ bβ

β
, with 1

γ
+ 1

β
= 1.

As expected, ab = |k|0, hence we could take a = |k|p , b = |k|q, thus p+ q = 0.

This implies 
aγ = |k|pγ = |k|−2α

bβ = |k|qβ = |k|2
. (5.7)
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As a result,


−2α= pγ

2= qβ
=⇒



p = −2α
α+1

q = 2α
α+1

γ=α+1

β= α+1
α

.

(5.8)

So, ∑
k 6=0

|ûn+1(k)− ûn(k)|2 ·
( |k|−2α

τ
+ ν|k|2

2

)

= ∑
k 6=0

|ûn+1(k)− ûn(k)|2 ·
[
α+1
τ

·
( |k|−2α

α+1

)
+ ν(α+1)

2α
·
(
|k|2
α+1
α

)]

≥ ∑
k 6=0

|ûn+1(k)− ûn(k)|2 ·
(
α+1
τ

) 1
α+1 ·

(
ν(α+1)

2α

) α+1
α

.

(5.9)

So it is plain to take Cατν =
(
α+1
τ

) 1
α+1 ·

(
ν(α+1)

2α

) α+1
α .

Remark 9. In the proof above, Cατν →∞ as α→ 0. Hence it would not work

for α= 0 case, but we could refer to chapter 3.

Back to the proof of Theorem 5.0.1, (5.4) leads to

(A+1
2
+Cατν)

∣∣∣∣un+1 −un∣∣∣∣2
L2+En+1−En ≤ ∣∣∣∣un+1 −un∣∣∣∣2

L2

(
||un||2∞+ 1

2
||un+1||2∞

)
.

(5.10)

To prove En+1 ≤ En, it suffices to show A+1
2+Cατν ≥ 3

2 max
{||un+1||2∞ , ||un||2∞

}
.

As in chapter 3, we rewrite the scheme (5.1) as

un+1 = 1+ Aτ(−∆)α

1+τν(−∆)α+1 + Aτ(−∆)α
un − τ(−∆)α

1+τν(−∆)α+1 + Aτ(−∆)α
ΠN [ f (un)] .

(5.11)
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Similarly, we could still apply the main lemma under the assumption u0

satisfies zero-mean condition. Recall that

||un+1||∞ . ||un+1||Ḣ1

√
log(||un+1||

Ḣ
3
2
+3) . (5.12)

We would like to estimate ||un+1||Ḣ1 and ||un+1||
Ḣ

3
2
. As we did in chapter

3, 
1+ Aτ|k|2α

1+ Aτ|k|2α+ντ|k|2+2α · |k|. |k|
τ|k|2α

1+ Aτ|k|2α+ντ|k|2+2α · |k|. τ

τA
|k| = 1

A
|k|

. (5.13)

Hence we derive

||un+1||Ḣ1(T2) .
(
1+ 1

A
+ 3||u||2∞

A

)
||un||Ḣ1(T2) , (5.14)

which is the same argument as in chapter 3.

Similarly, we could derive

||un+1||
Ḣ

3
2 (T2)

.
(

1+ Aτ
ντ

+ 1
ν

)
(En +1) , (5.15)

So prove by induction again,

Step 1 : The induction n =⇒ n+1 step. Assume En ≤ En−1 ≤ ·· · ≤ E0

and En ≤ supN E(ΠN u0), we would show En+1 ≤ En. This implies ||un||2
Ḣ1 =

||∇un||2L2 ≤ 2En

ν
≤ 2E0

ν
. By applying the main lemma carefully and E0 . E0+1,

||un||2∞ .E0 ν
−1 (1+ log(A)+| log(ν)|)+ν−1| log(τ)|+1 . (5.16)
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Define m0 := ν−1 (1+ log(A)+| log(ν)|) again, then the inequality above is

||un||2∞ .E0 m0 +ν−1| log(τ)|+1 . (5.17)

Similarly,

||un+1||2∞ .E0 1+ m3
0

A2 +m0 +ν−3| log(τ)|3. (5.18)

So we need the following condition holds:


A+ 1

2
+ (

α+1
τ

)
1

α+1 · (ν(α+1)
2α

)
α+1
α ≥ C(E0)

(
m0 +1+ m3

0

A2 +ν−3| log(τ)|3
)

m0 = ν−1 (1+ log(A)+| log(ν)|) .
(5.19)

Now we discuss 2 cases again:

Case 1: (α+1
τ

)
1

α+1 · (ν(α+1)
2α )

α+1
α ≥ C(E0)ν−3| log(τ)|3. In this case, it suffices to

choose A such that

A ÀE0 m0 = ν−1 (1+ log(A)+| log(ν)|) .

In fact, for ν& 1 , we could take A ÀE0 1; if 0 < ν¿ 1, we would choose

A = CE0 · ν−1| logν| , where CE0 is a large constant depending only on E0.

Therefore in both cases it suffices to choose

A = CE0 ·max
{
ν−1| log(ν)| , 1

}
. (5.20)

Case 2:(α+1
τ

)
1

α+1 · (ν(α+1)
2α )

α+1
α ≤ C(E0)ν−3| log(τ)|3. This still implies (1

τ
)

1
α+1 .
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( 1
ν
)−4− 1

α , hence | log(τ)|.E0 1+| log(ν)| for fixed 0 <α≤ 1. Now we go back to

equations (4.17), we have

||un||2∞ .E0 m0 (5.21)

as ν−1| log(τ)| would be absorbed by m0, recall m0 = ν−1 (1+ log(A)+| log(ν)|).
Hence substitute this new bound to (4.18), we would derive

||un+1||2∞ .
(
1+ (

1+||un||2∞
A

)||un||Ḣ1

√
log(3+||un+1||

Ḣ
3
2
)
)2

.E0

(
1+ (1+ m0

A
)(

√
1
ν

√
log(3+||un+1||

Ḣ
3
2
)

)2

.E0

(
1+ (1+ m0

A
)
p

m0

)2

.E0 1+ m3
0

A2 +m0 .

(5.22)

Thus it still suffices to take

A ≥ CE0 m0 . (5.23)

For the induction base Step 2, the proof is exactly the same as in chapter 3

and this shows stability of the semi-implicit scheme in fractional Laplacian

case.
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Chapter 6

Stability of a First Order

Semi-implicit Scheme on 3D

Allen-Cahn Equation

In this chapter, we would like to explore a bit more in three dimension

case. What makes the difference is that the main lemma proved in chapter

2 should not hold. To clarify, the Ḣ1-norm should be replaced by Ḣ
3
2 -norm

in the log-type inequality proved in chapter 2, as a result of scaling invari-

ance. However, Ḣ
3
2 -norm would not help to prove 3D theorem as there is no

a-priori energy bound for Ḣ
3
2 -norm. To solve this issue, we would try an al-

ternate interpolation inequality. For simplicity, we only consider Allen-Cahn

equation in 3D periodic domain T3 = (R/2πZ)3 in this chapter as other Cahn-

Hilliard type equations could be handled similarly. To begin with, we recall

the numerical scheme (3.1) for Allen-Cahn equation.


un+1 −un

τ
= ν∆un+1 − A(un+1 −un)−ΠN f (un)

u0 =ΠN u0

. (6.1)
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6.1. the Main Lemma

where τ is the time step and A > 0 is the coefficient for the O(τ) regularization

term. As usual, for N ≥ 2, define

XN = span
{
cos(k · x) ,sin(k · x) : k = (k1,k2,k3) ∈Z3 , |k|∞ =max{|k1|, |k2|, |k3|}≤ N

}
.

Theorem 6.0.1. (3D energy stability for AC) Consider (6.1) with ν > 0 and

assume u0 ∈ H2(T3). Then there exists a constant β0 depending only on the

initial energy E0 = E(u0) such that if

A ≥β · (||u0||2H2 +ν−3 +1
)

, β≥β0 (6.2)

then E(un+1)≤ E(un), ∀n ≥ 0, where E is defined before.

Remark 10. Unlike in chapter 3, our choice of A is independent of τ as long

as it has size of O
(
ν−3)

at least, which is much larger than O
(
ν−1| log(ν)|2)

.

This results from the loss of log type control for the L∞ bound.

Before proving Theorem 6.0.1, we would prove a new main lemma here.

6.1 the Main Lemma

For all f ∈ H2(T3) , one has

|| f ||∞ . || f ||
1
2

Ḣ1 || f ||
1
2

Ḣ2 +| f̂ (0)| . (6.3)

Proof. First we write f (x)= 1
(2π)3

∑
k∈Z3 f̂ (k) eik·x, the Fourier series of f in T3.
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6.2. Proof of 3D Stability Theorem

So,

|| f ||∞ ≤ 1
(2π)3

∑
k∈Z3

| f̂ (k)|

≤ 1
(2π)3 | f̂ (0)|+ 1

(2π)3

( ∑
0<|k|≤N

| f̂ (k)|+ ∑
|k|>N

| f̂ (k)|
)

. | f̂ (0)|+ ∑
0<|k|≤N

(| f̂ (k)||k| · |k|−1)+ ∑
|k|>N

(| f̂ (k)||k|2 · |k|−2)

. | f̂ (0)|+
( ∑

0<|k|≤N
| f̂ (k)|2|k|2

) 1
2

·
( ∑

0<|k|≤N
|k|−2

) 1
2

+
( ∑
|k|>N

| f̂ (k)|2|k|4
) 1

2

· ( ∑
|k|>N

|k|−4)
1
2

. | f̂ (0)|+
( ∑
|k|>N

| f̂ (k)|2|k|4
) 1

2

·
(∫ ∞

N

πr2

r4 dr
) 1

2

+
( ∑

0<|k|≤N
| f̂ (k)|2|k|2

) 1
2

·
(∫ N

1

πr2

r2 dr
) 1

2

. | f̂ (0)|+ || f ||Ḣ2 ·N− 1
2 +|| f ||Ḣ1 ·N 1

2 .
(6.4)

We optimize N and hence derive

|| f ||∞ . | f̂ (0)|+ || f ||
1
2

Ḣ1 || f ||
1
2

Ḣ2 . (6.5)

6.2 Proof of 3D Stability Theorem

By the same argument in chapter 3 with notation En = E(un),

(
1
τ
+ A+ 1

2
)||un+1 −un||2L2 + ν

2
||∇(un+1 −un)||2L2 +En+1 −En

≤ ||un+1 −un||2L2

(
||un||2∞+ 1

2
||un+1||2∞

)
.

(6.6)
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Clearly, in order to show En+1 ≤ En, it suffices to show

1
τ
+ A+ 1

2
≥ 3

2
max

{||un||2∞ , ||un+1||2∞
}

. (6.7)

Now we rewrite the scheme (5.1) as the following:

un+1 = 1+ Aτ
1+ Aτ−ντ∆un − τ

1+ Aτ−ντ∆ΠN [ f (un)]. (6.8)

Recall that

||un+1||∞ . |ûn+1(0)|+ ||un+1||
1
2

Ḣ1 ||un+1||
1
2

Ḣ2 . (6.9)

Clearly, we need to estimate |ûn+1(0)|, ||un+1||Ḣ1 and ||un+1||Ḣ2 . By the

same argument in chapter 3,

|ûn+1(0)|. 1+
p

En . (6.10)

Note that 
(1+ Aτ)|k|

1+ Aτ+ντ|k|2 ≤ |k|
τ|k|

1+ Aτ+ντ|k|2 ≤ τ|k|
2τ

p
Aν|k|

.
1p
Aν

. (6.11)

Hence

||un+1||Ḣ1 . ||un||Ḣ1 + 1p
Aν

|| f (un)||L2

. ||un||Ḣ1 + 1p
Aν

(||(un)3||L2 +1) .
(6.12)

Similarly, 
(1+ Aτ)|k|2

1+ Aτ+ντ|k|2 .

 1

τ
p

Aν
+

√
A
ν

 |k|
τ|k|2

1+ Aτ+ντ|k|2 ≤ 1
ν

. (6.13)
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This implies

||un+1||Ḣ2 .

 1

τ
p

Aν
+

√
A
ν

 ||un||Ḣ1 + 1
ν
|| f (un)||L2

.

 1

τ
p

Aν
+

√
A
ν

 ||un||Ḣ1 + 1
ν

(||(un)3||L2 +1
)

.

(6.14)

Note that by standard Sobolev inequality,

||(un)3||L2 = ||un||3L6 . ||un||3H1 . ||∇un||3L2 +||un||3L2 . ||un||3Ḣ1 +1+ (En)
3
2 .

(6.15)

As a result,


||un+1||Ḣ1 . ||un||Ḣ1 + 1p

Aν

(
||(un)||3Ḣ1 +1+ (En)

3
2

)
||un+1||Ḣ2 .

 1

τ
p

Aν
+

√
A
ν

 ||un||Ḣ1 + 1
ν

(
||(un)||3Ḣ1 +1+ (En)

3
2

) . (6.16)

We would prove the 3D stability theorem inductively as in chapter 3.

Step 1: The induction n =⇒ n+ 1 step. Assume En ≤ En−1 ≤ ·· · ≤ E0

and En ≤ supN E(ΠN u0), we would show En+1 ≤ En. This implies ||un||2
Ḣ1 =

||∇un||2L2 ≤ 2En

ν
≤ 2E0

ν
. Recall supN E(ΠN u0). E0+1 as well. Hence we would

derive,


||un+1||Ḣ1 .E0 ν

− 1
2 + A− 1

2ν−
1
2

(
ν−

3
2 +1

)
.E0 ν

− 1
2 + A− 1

2ν−2

||un+1||Ḣ2 .E0 A
1
2ν−1 +ν− 5

2 +τ−1 A− 1
2ν−1

. (6.17)
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Applying the new main lemma,

||un+1||2∞ .E0

(
ν−

1
2 + A− 1

2ν−2
)
·
(
A

1
2ν−1 +ν− 5

2 +τ−1 A− 1
2ν−1

)
+1

.E0 A
1
2ν−

3
2 +ν−3 + A− 1

2ν−
9
2 +τ−1 A− 1

2ν−
3
2 +τ−1 A−1ν−3 +1 .

(6.18)

To satisfy the sufficient condition (6.7)

A
1
2ν−

3
2 +ν−3 + A− 1

2ν−
9
2 +τ−1 A− 1

2ν−
3
2 +τ−1 A−1ν−3 .E0 A+ 1

τ
,

it suffices to take

A ≥ CE0ν
−3 , (6.19)

for a large enough constant CE0 depending only on E0.

Step 2: check the induction base step n = 1. It’s clear that we only need

to check

A+ 1
2
+ 1
τ
≥ 3

2
||ΠN u0||2∞+ 3

2
||u1||2∞.

By standard Sobolev inequality in T3,

||ΠN u0||2∞ . ||ΠN u0||2H2 . ||u0||2H2 . (6.20)

On the other hand, by the main lemma it suffices to take

A+ 1
τ
≥ c1||u0||2H2 +αE0

(
A

1
2ν−

3
2 +ν−3 + A− 1

2ν−
9
2 +τ−1 A− 1

2ν−
3
2 +τ−1 A−1ν−3

)
,

(6.21)

where c1 is an absolute constant and αE0 is a constant only depending on E0.
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6.3. L2 Error Estimate of 3D Allen-Cahn Equation

Hence it suffices to take

A ≥ CE0

(||u0||2H2 +ν−3 +1
)

, (6.22)

for a large constant CE0 only depending on E0. This completes the proof.

By using this new main lemma, the 3D fractional Cahn-Hilliard could be

handled similarly.

6.3 L2 Error Estimate of 3D Allen-Cahn Equation

Theorem 6.3.1. Let ν > 0. Let u0 ∈ Hs, s ≥ 4 and u(t) be the solution to

Allen-Cahn equation with initial data u0. Let un be the numerical solution

with initial data ΠN u0. Assume A satisfies the same condition in the stability

theorem. Define tm = mτ, m ≥ 1. Then

||um −u(tm)||2 ≤ A · eC1 tm ·C2 ·
(
N−s +τ) ,

where C1 > 0 depends only on (u0,ν) and C2 depends on (u0,ν, s).

Proof. Recall



un+1 −un

τ
= ν∆un+1 −ΠN f (un)− A(un+1 −un)

∂tu = ν∆u− f (u)

u0 =ΠN u0 , u(0)= u0 .

(6.23)

As we proved in chapter 4, the auxiliary L2 estimate lemma and all bounded-

ness lemma work for 3D case. The only difference is the estimate for ||∂t∆u||2
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6.3. L2 Error Estimate of 3D Allen-Cahn Equation

using Gagliardo–Nirenberg interpolation inequality,

||∂t∆u||2 . ||〈∇〉3
∂tu||

2
3
2 · ||∂tu||

1
3
2 . ||∂tu||

1
3
2 , (6.24)

which works as well for the same power. This leads to the conclusion of The-

orem 6.3.1 by exactly same argument in chapter 4.

65



Chapter 7

Second Order Semi-Implicit

Schemes

In previous chapters we introduce first order semi-implicit schemes for

Allen-Cahn equation and fractional Cahn-Hilliard equation in both two di-

mensional periodic domain and three dimensional periodic domain. For the

completeness, we would like to study some second order schemes. As a repre-

sentative case, we only consider 2D Allen-Cahn equation here. The analysis

of other cases would be similar. We introduce two second order schemes and

prove the unconditional stability for Scheme I and conditional stability for

Scheme II.

7.1 Introduction of Scheme I:

As introduced in [9], the second order semi-implicit Fourier spectral scheme

I is given by:

3un+1 −4un +un−1

2τ
= ν∆un+1 − Aτ(un+1 −un)−ΠN

(
2 f (un)− f (un−1)

)
, n ≥ 1 ,

(7.1)
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7.2. Estimate of the First Order Scheme (7.2)

where τ> 0 is the time step and this scheme applies second order backward

derivative in time with a second order extrapolation for the nonlinear term.

To start the iteration, we need to derive u1 according to the following first

order scheme: 
u1 −u0

τ1
= ν∆u1 −ΠN f (u0) ,

u0 =ΠN u0 ,

(7.2)

where τ1 = min{τ
4
3 , 1}. The choice of τ is because of the error analysis

which will be proved later. Roughly speaking,

||u1 −u(τ1)||2 . N−s +τ
3
2
1 ,

where u(τ1) denotes the exact PDE solution at τ1. As expected in L2 error

analysis for the second order scheme, we require that τ
3
2
1 . τ2 hence τ1 . τ

4
3 .

7.2 Estimate of the First Order Scheme (7.2)

In this section we will estimate some bounds of u1 which will be used to

prove the stability of the second order scheme and an error estimate of u1

which will be used to prove L2 error estimate of the second order scheme.

Lemma 7.2.1. Consider the scheme (7.2). Assume u0 ∈ H2(T2), then

||u1||∞+ ||u1 −u0||22
τ1

+ ν

2
||∇u1||22 .E(u0) , ||u0||H2 1 . (7.3)
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7.2. Estimate of the First Order Scheme (7.2)

Proof. First we consider ||u1||∞. We write

u1 = 1
1−τ1ν∆

u0 − τ1ΠN

1−τ1ν∆
f (u0) . (7.4)

Note that
1

1+τ1ν|k|2
≤ 1 , τ1 ≤ 1 , (7.5)

thus

||u1||∞ . ||u1||H2 . ||u0||H2 +|| f (u0)||H2

. ||u0||H2 +||(u0)3||H2

.||u0||H2 1 ,

(7.6)

as ||u0||∞ . 1 by Morrey’s inequality.

Second, we take the L2 inner product with u1 −u0 on both sides of (7.2).

||u1 −u0||22
τ1

+ ν

2
(||∇u1||22 −||∇u0||22 +||∇(u1 −u0)||22

)
=−( f (u0) , u1 −u0)

≤ || f (u0)|| 4
3
||u1 −u0||4

.E(u0) 1 ,

(7.7)

by ||u0||∞ , ||u1||∞ . 1.

As a result, ||u1||∞+ ||u1−u0||22
τ1

+ ν
2 ||∇u1||22 .E(u0) , ||u0||H2 1.

68
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Lemma 7.2.2. (Error estimate for u1) Consider



u1 −u0

τ1
= ν∆u1 −ΠN f (u0)

∂tu = ν∆u− f (u)

u0 =ΠN u0 , u(0)= u0 .

(7.8)

Let u0 ∈ Hs, s ≥ 6. There exists a constant D1 > 0 depending only on (u0,ν, s),

such that ||u(τ1)−u1||2 ≤ D1 · (N−s +τ
3
2
1 ).

Proof. We start the proof in three steps:

Step 1: Time discretization of the PDE.

Write the PDE in time interval [0,τ1]. Note that for a one-variable func-

tion h(s),

h(0)= h(τ1)+
∫ 0

τ1

h′(s) ds

= h(τ1)−h′(τ1)τ1 +
∫ τ1

0
h′′(s) · s ds .

(7.9)

By applying this formula, we have

u(τ1)−u(0)
τ1

= ∂tu(τ1)− 1
τ1

∫ τ1

0
(∂ttu) · s ds

= ν∆u(τ1)− f (u(τ1))− 1
τ1

∫ τ1

0
(∂ttu) · s ds

= ν∆u(τ1)−ΠN f (u(0))−Π>N f (u(0))− [ f (u(τ1)− f (u(0))]

− 1
τ1

∫ τ1

0
(∂ttu) · s ds ,

(7.10)

where Π>N = id−ΠN as in chapter 4.
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7.2. Estimate of the First Order Scheme (7.2)

Hence
u(τ1)−u(0)

τ1
= ν∆u(τ1)−ΠN f (u(0))+G0 , (7.11)

where

G0 =−Π>N f (u(0))− [ f (u(τ1)− f (u(0))]− 1
τ1

∫ τ1

0
(∂ttu) · s ds

=−Π>N f (u(0))− [ f (u(τ1)− f (u(0))]− 1
τ1

∫ τ1

0
(ν∆∂tu− f ′(u)∂tu) · s ds

(7.12)

Step 2: Estimate of ||u(τ1)−u1||2. We consider



u(τ1)−u(0)
τ1

= ν∆u(τ1)−ΠN f (u(0))+G0

u1 −u0

τ1
= ν∆u1 −ΠN f (u0)

u0 =ΠN u0 , u(0)= u0 .

(7.13)

Define e1 = u(τ1)−u1 and e0 = u(0)−u0. Then we get

e1 − e0

τ1
= ν∆e1 −ΠN

(
f (u(0))− f (u0)

)+G0 . (7.14)

Take the L2 inner product with e1 on both sides, we derive

1
2τ1

(||e1||22 −||e0||22 +||e1 − e0||22
)+ν||∇e1||22

≤ || f (u(0))− f (u0)||2 · ||e1||2 +||G0||2 · ||e1||2

.
(||e0||2 +||G0||2

) ||e1||2

.
(||e0||22 +||G0||22

)+ 1
4
||e1||22 .

(7.15)

As a result,
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7.2. Estimate of the First Order Scheme (7.2)

(
1− τ1

2

)
||e1||22 ≤ 2τ1

(||e0||22 +||G0||22
)+||e0||22 . (7.16)

note that τ1 ≤ 1, so 1− τ1
2 ≥ 1

2 , and

||e1||22 . (1+τ1)||e0||22 +τ1||G0||22 . (7.17)

Step 3: Estimate of ||e0||22 and ||G0||22.

Note that ||e0||22 = ||u(0)−u0||22 = ||u0 −ΠN u0||22 = ||Π>N u0||22. As proved in

chapter 4, section 4.2.2,

||e0||22 = ||Π>N u0||22 . N−2s . (7.18)

For ||G0||2, note that ||Π>N f (u(0))||2 . N−s, by the maximum principle proved

in chapter 4, Lemma 4.2.2.

On the other hand, by the mean value theorem,

f (u(τ1))− f (u(0))= f ′(ξ)(u(τ1)−u(0)) ,

where ξ is a number between u(τ1) and u(0). Again by the maximum

principle,

|| f (u(τ1))− f (u(0))||2 . ||u(τ1)−u(0)||2 . τ1||∂tu||L∞
t L2

x([0 , τ1]×T2) . τ1 , (7.19)

using the Sobolev bound of the exact solution proved in chapter 4, Lemma

4.2.3.
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7.3. Unconditional Stability of the Second Order Scheme I (7.1) & (7.2)

Finally, ∥∥∥∥ 1
τ1

∫ τ1

0
(ν∆∂tu− f ′(u)∂tu) · s ds

∥∥∥∥
2

.
∥∥∥∥∫ τ1

0
ν∆∂tu− f ′(u)∂tu ds

∥∥∥∥
2

.
∫ τ1

0
||ν∆∂tu||2 ds+

∫ τ1

0
|| f ′(u)∂tu||2 ds

. τ1 .

(7.20)

This implies ||G0||22 . N−2s +τ2
1. Hence

||e1||22 . (1+τ1)N−2s +τ1(N−2s +τ2
1). N−2s +τ3

1 . (7.21)

As a result,

||e1||2 . N−s +τ
3
2
1 . (7.22)

7.3 Unconditional Stability of the Second Order

Scheme I (7.1) & (7.2)

In this section we will prove a unconditional stability theorem for the sec-

ond order scheme (7.1) combining (7.2). To get started, we state the theorem

first.

Theorem 7.3.1. (Unconditional Stability) Consider the scheme (7.1)-(7.2) with

ν> 0, τ> 0 and N ≥ 2. Assume u0 ∈ H2(T2). The initial energy is denoted by

E0 = E(u0). If there exists a constant βc > 0 depending only on E0 and ||u0||H2 ,
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7.3. Unconditional Stability of the Second Order Scheme I (7.1) & (7.2)

such that

A ≥β · (ν2 +ν−10| logν|4) , β≥βc ,

then

Ẽ(un+1)≤ Ẽ(un) , n ≥ 1 ,

where Ẽ(un) for n ≥ 1 is a modified energy functional and is defined as

Ẽ(un) := E(un)+ ν

4
||un −un−1||22 +

1
4τ

||un −un−1||22 .

Before proving this stability theorem, we begin with several lemmas.

Lemma 7.3.2. Consider (7.1) for n ≥ 1. Suppose E(un) ≤ B and E(un−1) ≤ B

for some B > 0. Then

||un+1||∞ ≤αB ·
(1+ν−1) ·

√
log(3+ Aτ

ν
+ 1
τν

+ν− 5
2 +ν−1)+τ+1

 ,

for some αB > 0 only depending on B.

Proof. For simplicity we write . instead of .B. Recall (7.1):

3un+1 −4un +un−1

2τ
= ν∆un+1 − Aτ(un+1 −un)−ΠN

(
2 f (un)− f (un−1)

)
.

(7.23)

We rewrite as

un+1 = 4+2Aτ2

3−2ντ∆+2Aτ2 un − 1
3−2ντ∆+2Aτ2 un−1

− 2τΠN

3−2ντ∆+2Aτ2

(
2 f (un)− f (un−1)

)
.

(7.24)
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First, for k = 0, 

4+2Aτ2

3+2Aτ2 . 1

1
3+2Aτ2 . 1

2
3+2Aτ2 . τ .

(7.25)

Thus

|�un+1(0)|. τ+1 . (7.26)

Note that for |k| ≥ 1,



4+2Aτ2

3+2ντ|k|2 +2Aτ2 . 1

1
3+2ντ|k|2 +2Aτ2 . 1

2τ|k|
3+2ντ|k|2 +2Aτ2 .

τ|k|
ντ|k|2 .

1
ν
· |k|−1 .

(7.27)

Thus

||un+1||Ḣ1 . ||un||Ḣ1 +||un−1||Ḣ1 + 1
ν
||〈∇〉−1 (

2 f (un)− f (un−1)
) ||2

. ν−
1
2 +ν−1(||(un)3||4/3 +||(un−1)3||4/3 +||un||2 +||un−1||2)

. ν−
1
2 +ν−1 ,

(7.28)

here we apply Sobolev’s inequality as introduced in chapter 2 and apply the

energy bound as proved in chapter 3.

Similarly,
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

|k|2(4+2Aτ2)
3+2ντ|k|2 +2Aτ2 .

|k|2(1+ Aτ2)
ντ|k|2 .

1
ντ

+ Aτ
ν

|k|2
3+2ντ|k|2 +2Aτ2 .

1
ντ

2τ|k|2
3+2ντ|k|2 +2Aτ2 .

τ|k|2
ντ|k|2 .

1
ν

.

(7.29)

This implies

||un+1||Ḣ2 .
(

1
ντ

+ Aτ
ν

)
||un||2 + 1

ντ
||un−1||2 + 1

ν
||2 f (un)− f (un−1)||2

.
1
ντ

+ Aτ
ν

+ 1
ν

(||un||36 +||un−1||36 +||un||2 +||un−1||2
)

.
1
ντ

+ Aτ
ν

+ 1
ν

(||un||3H1 +||un−1||3H1 +1
)

.
1
ντ

+ Aτ
ν

+ 1
ν

(ν−
3
2 +1) .

(7.30)

Finally, by applying the main log-interpolation lemma proved in chapter

2, section 2.3, we can derive

||un+1||∞ . (1+||un+1||Ḣ1) ·
√

log(3+||un+1||Ḣ2)+|áun+1(0)|

. (1+ν−1) ·
√

log(3+ Aτ
ν

+ 1
ντ

+ν− 5
2 +ν−1)+τ+1 ,

(7.31)

where ν−
1
2 is bounded by ν−1 +1.
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7.3.1 Proof of Unconditional Stability (Theorem 7.3.1)

Before proving the theorem, we first introduce some notation. We denote

δun+1 := un+1 −un and δ2un+1 := un+1 −2un +un−1. Clearly,



3un+1 −4un +un−1 = 2δun+1 +δ2un+1

δ2un+1 −δun+1 =−δun

δun ·un = (un −un−1)un = 1
2

(|un|2 −|un−1|2 +|δun|2)
.

(7.32)

As a result,

(
3un+1 −4un +un−1 , un+1 −un)
= (

2δun+1 +δ2un+1 , δun+1)
= 2||δun+1||22 +

(
δun+1 −δun , δun+1)

= 2||δun+1||22 +
1
2

(||δun+1||22 −||δun||22 +||δ2un+1||22
)

.

(7.33)

Now recall the scheme (7.1)

3un+1 −4un +un−1

2τ
= ν∆un+1 − Aτ(un+1 −un)−ΠN

(
2 f (un)− f (un−1)

)
.

(7.34)

Take the L2 inner product with δun+1 = un+1 −un on both sides of (7.1). We

have
1
τ
||δun+1||22 +

1
4τ

(||δun+1||22 −||δun||22 +||δ2un+1||22
)

+ν
2

(||∇un+1||22 −||∇un||22 +||δ∇un+1||22
)

+Aτ||δun+1||22 =−(
ΠN (2 f (un)− f (un−1)) , δun+1)

.

(7.35)

To analyze
(
2 f (un)− f (un−1) , δun+1)

, we consider 2 f (un)− f (un−1)= f (un)+
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(
f (un)− f (un−1)

.

Note that F ′ = f , hence by fundamental theorem of calculus,

F(un+1)−F(un)

= f (un)δun+1 +
∫ 1

0
f ′(un + sδun+1)(1− s) ds · (δun+1)2

= f (un)δun+1 +
∫ 1

0
f̃ (un + sδun+1)(1− s) ds · (δun+1)2 − 1

2
(δun+1)2 ,

(7.36)

where f̃ (x)= 3x2, as f ′(x)= 3x2 −1. And this implies

f (un)δun+1 ≥ F(un+1)−F(un)+ 1
2

(δun+1)2 − 3
2

(||un||2∞+||un+1||2∞
) · (δun+1)2 .

(7.37)

On the other hand,

f (un)− f (un−1)= f ′(ξ)δun , (7.38)

and hence

( f (un)− f (un−1)) ·δun+1 ≥−(
3||un||2∞+3||un−1||2∞+1

) · |δun| · |δun+1|

≥ −
(
1+3||un||2∞+3||un−1||2∞

)2

ν
· ||δun||22 −

ν

4
||δun+1||22 .

(7.39)

Hence the estimate of the nonlinear term is as following:
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− (
ΠN (2 f (un)− f (un−1)) , δun+1)

=− (
2 f (un)− f (un−1) , δun+1)

≤−
∫
T2

F(un+1) dx+
∫
T2

F(un) dx− 1
2
||δun+1||22

+ 3
2

(||un||2∞+||un+1||2∞
) · ||δun+1||22

+
(
1+3||un||2∞+3||un−1||2∞

)2

ν
· ||δun||22 +

ν

4
||δun+1||22 .

(7.40)

Combine all estimates (7.35) and (7.40) we get

1
τ
||δun+1||22 +

1
4τ

(||δun+1||22 −||δun||22 +||δ2un+1||22
)

+ν
2

(||∇un+1||22 −||∇un||22 +||δ∇un+1||22
)

+Aτ||δun+1||22
≤−

∫
T2

F(un+1) dx+
∫
T2

F(un) dx− 1
2
||δun+1||22

+3
2

(||un||2∞+||un+1||2∞
) · ||δun+1||22

+
(
1+3||un||2∞+3||un−1||2∞

)2

ν
· ||δun||22 +

ν

4
||δun+1||22 .

(7.41)

After simplification,

(
1
τ
+ Aτ− ν

4
+ 1

2

)
· ||δun+1||22 + Ẽ(un+1)

≤
{

3
2

(||un||2∞+||un+1||2∞)+
(
1+3||un||2∞+3||un−1||2∞

)2

ν

}
· ||δun+1||22 + Ẽ(un) .

(7.42)
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Clearly to show Ẽ(un+1)≤ Ẽ(un), it suffices to show

1
τ
+ Aτ− ν

4
+ 1

2
≥

3
2

(||un||2∞+||un+1||2∞)+
(
1+3||un||2∞+3||un−1||2∞

)2

ν
.

(7.43)

We now prove this sufficient condition inductively. Set

B =max
{
Ẽ(u1) , E(u0)

}
.

By Lemma 7.2.1 in previous section, B . 1. We shall prove for every m ≥ 2,


Ẽ(um)≤ B , Ẽ(um)≤ Ẽ(um−1) ,

||um||∞ ≤αB ·
(1+ν−1) ·

√
log(3+ Aτ

ν
+ 1
τν

+ν− 5
2 +ν−1)+τ+1

 ,
(7.44)

where αB > 0 is the same constant in Lemma 7.3.2.

We first check the base case when m = 2.

Note that E(u1) ≤ Ẽ(u1) ≤ B and E(u0) ≤ B, then we can apply Lemma

7.3.2, and hence obtain

||u2||∞ ≤αB ·
(1+ν−1) ·

√
log(3+ Aτ

ν
+ 1
τν

+ν− 5
2 +ν−1)+τ+1

 . (7.45)

We only need to check Ẽ(u2) ≤ Ẽ(u1). By the sufficient condition (7.41),

we only need to check the inequality
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1
τ
+ Aτ− ν

4
+ 1

2
≥ 3

2
(||u1||2∞+||u2||2∞)+

(
1+3||u1||2∞+3||u0||2∞

)2

ν
. (7.46)

By Lemma 7.2.1, ||u0||∞ , ||u1||∞ . 1, it suffices to choose A such that

1
τ
+ Aτ− ν

4
+ 1

2
≥ C · (1+ν−2) · log(3+ Aτ

ν
+ 1
τν

+ν− 5
2 +ν−1)+Cν−1 +C+Cτ .

(7.47)

We discuss two case and denote X = Aτ+ 1
τ
.

Case 1: 0< ν≤ 1/2. In this case we need

X + 1
2
≥ Cν−2 · (| logν|+ | log X |) . (7.48)

Hence we need

X ≥ C ·ν−2| logν| . (7.49)

Case 2: ν> 1/2. Then we need

X ≥ C · (| log X |+1+ν) , (7.50)

and hence

X ≥ C · (1+ν) . (7.51)

In conclusion, as X ≥ 2
p

A,

A ≥ C · (1+ν2 +ν−4| logν|2)≥ C · (ν2 +ν−4| logν|2) . (7.52)
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Now we check the induction step. Assume the induction hypothesis hold

for 2≤ m ≤ n, then for m = n+1,

||un+1||∞ ≤αB ·
(1+ν−1) ·

√
log(3+ Aτ

ν
+ 1
τν

+ν− 5
2 +ν−1)+τ

 , (7.53)

by Lemma 7.3.2. It remains to show Ẽ(un+1) ≤ Ẽ(un). It suffices to choose A

such that

1
τ
+ Aτ+ 1

2
≥ν

4
+C · (1+ν−2) · log(3+ Aτ

ν
+ 1
τν

+ν− 5
2 +ν−1)

+ C(1+ν−4)
ν

(
(log(3+ Aτ

ν
+ 1
τν

+ν− 5
2 +ν−1))2 +τ

)
.

(7.54)

In terms of X = Aτ+ 1
τ

again, we need to discuss two cases as well.

Case 1: 0< ν≤ 1/2. Then

X ≥ C ·ν−5(| logν|2 +| log X |2) . (7.55)

As a result,

X ≥ C ·ν−5| logν|2 . (7.56)

Case 2: ν> 1/2. Then we need

X ≥ Cν+C · (log X + (log X )2ν−1) , (7.57)

hence X ≥ C · (ν+1).

In conclusion of two cases,
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A ≥ C · (ν2 +1+ν−10| logν|4)≥ C · (ν2 +ν−10| logν|4) . (7.58)

This completes the induction. Combining the estimate, we need to take

A ≥ C · (ν2 +ν−10| logν|4) , (7.59)

such that Ẽ(un+1)≤ Ẽ(un), for n ≥ 1.

7.4 L2 Error Estimate of Second Order Scheme I

First we state the theorem.

Theorem 7.4.1. (L2 error estimate) Let ν> 0 and u0 ∈ Hs, s ≥ 8. Let 0< τ≤ M

for some M > 0. Let u(t) be the continuous solution to the 2D Allen-Cahn

equation with initial data u0. Let u1 be defined according to (7.2) with initial

data u0 =ΠN u0. Let um, m ≥ 2 be defined in (7.1) with initial data u0 and u1.

Assume A satisfies the same condition in Theorem 7.3.1. Define t0 = 0, t1 = τ1

and tm = τ1 + (m−1)τ for m ≥ 2. Then for any m ≥ 1,

||u(tm)−um||2 ≤ C1 · eC2 tm · (N−s +τ2) , (7.60)

where C1 , C2 > 0 are constants depending only on (u0, ν, s, A, M).

Remark 11. Here we require that τ is not arbitrarily large. This is a result of

loss of mass conservation as preserved by Cahn-Hilliard equation. However,

in practice it is not a big issue as we always use small time steps.

Similar to chapter 4, we will study the auxiliary error estimate behavior
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and time discretization behavior of Allen-Cahn equation before proving the

theorem.

7.4.1 Auxiliary L2 Error Estimate for Near Solutions

Consider for n ≥ 1,


3un+1 −4un +un−1

2τ
= ν∆un+1 − Aτ(un+1 −un)−ΠN

(
2 f (un)− f (un−1)

)+Gn

3vn+1 −4vn +vn−1

2τ
= ν∆vn+1 − Aτ(vn+1 −vn)−ΠN

(
2 f (vn)− f (vn−1)

)
,
(7.61)

where (u1, u0, v1, v0) are given.

Proposition 3. For solutions of (7.59), assume for some N1 > 0,

sup
n≥0

||un||+sup
n≥0

||vn|| ≤ N1 , (7.62)

Then for any m ≥ 2,

||um −vm||22 ≤ C ·exp

(
(m−1)τ · C(1+N4

1 )
η

)

·
(
(1+ Aτ2)||u1 −v1||22 +||u0 −v0||22 +

τ

η

m−1∑
n=1

||Gn||22
)

,

(7.63)

where C > 0 is a absolute constant that could be computed and 0< η< 1
100M is

a constant depending only on M, the upper bound for τ.

Proof. We still denote the constant by C whose value may vary in different

lines. Denote en = un −vn, then
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3en+1 −4en + en−1

2τ
−ν∆en+1 + Aτ(en+1 − en)

=−ΠN
(
2 f (un)−2 f (vn)

)+ΠN
(
f (un−1)− f (vn−1)

)+Gn
(7.64)

Take the L2 inner product with en+1 on both sides, we derive

1
2τ

(3en+1 −4en + en−1, en+1)+ν||∇en+1||22 +
Aτ
2

(||en+1||22 −||en||22 +||en+1 − en||22
)

=−2( f (un)− f (vn), en+1)+ ( f (un−1)− f (vn−1), en+1)+ (Gn, en+1) .
(7.65)

To estimate the RHS, first observe that

|( f (un)− f (vn), en+1)| ≤ || f (un)− f (vn)||2||en+1||2 ≤
|| f (un)− f (vn)||22

η
+η||en+1||22,

(7.66)

where η< 1
100M is a small number only depending on M.

Moreover, use similar method in chapter 4,

f (un)− f (vn)= f (un)− f (un − en)

= (un)3 − (un − en)3 − en

=−(en)3 − en −3un(en)2 +3(un)2en .

(7.67)

So by assumption

|| f (un)− f (vn)||22 .||en||4∞||en||22 +||en||22 +||un||2∞||en||22 +||un||4∞||en||22
.(1+N4

1 )||en||22 .
(7.68)

Similarly,

|| f (un−1)− f (vn−1)||22 . (1+N4
1 )||en−1||22 . (7.69)
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As a result,

RHS≤ C(1+N4
1 )

η

(||en||22 +||en−1||22
)+ 1

η
||Gn||22 +η||en+1||22 . (7.70)

On the other hand,

(3en+1 −4en + en−1, en+1 − en)= (2δen+1 +δ2en+1, δen+1)

= 2||δen+1||22 +
1
2

(||δen+1||22 −||δen||22 +||δ2en+1||22
)

.
(7.71)

Also,

(3en+1 −4en + en−1, en)= 3(δen+1, en)− (δen, en)

=3
2

(||en+1||22 −||en||22 −||en+1 − en||22
)− 1

2
(||en||22 −||en−1||22 +||en − en−1||22

)
.

(7.72)

These two equations give

(3en+1 −4en + en−1, en+1)

=3
2

(||en+1||22 −||en||22)− 1
2

(||en||22 −||en−1||22)+||δen+1||22 −||δen||22

+ 1
2
||δ2en+1||22 .

(7.73)

Collecting all estimates (7.70) and (7.73), (7.63) becomes

1
2τ

(
3
2
||en+1||22 −

1
2
||en||22 +||en+1 − en||22

)
+ Aτ

2
||en+1||22

≤ 1
2τ

(
3
2
||en||22 −

1
2
||en−1||22 +||en − en−1||22

)
+ Aτ

2
||en||22

+C(1+N4
1 )

η

(||en||22 +||en−1||22
)+ 1

η
||Gn||22 +η||en+1||22 .

(7.74)

Now define X n+1 := 3
2 ||en+1||22 − 1

2 ||en||22 +||en+1 − en||22. We observe that
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X n+1 =


1
2
||en+1||22 +

1
2
||2en+1 − en||22

1
10

||en||22 +
5
2
||en+1 − 2

5
en||22 .

(7.75)

This shows

X n+1 ≥ 1
10

max
{||en+1||22, ||en||22

}
. (7.76)

Making use of X n+1, (7.72) becomes

(
X n+1 + Aτ2||en+1||22

)− (
X n + Aτ2||en||22

)
2τ

≤C(1+N4
1 )

η

(||en||22 +||en−1||22
)+ 1

η
||Gn||22 +η||en+1||22 .

(7.77)

This leads to

(
X n+1 −2ητ||en+1||22 + Aτ2||en+1||22

)− (
X n −2ητ||en||22 + Aτ2||en||22

)
2τ

≤C(1+N4
1 )

η

(||en||22 +||en−1||22
)+ 1

η
||Gn||22 +η||en||22

≤
(

C(1+N4
1 )

η
+Cη

)
· (X n −2ητ||en||22

)+ 1
η
||Gn||22 .

(7.78)

Define

yn = X n −2ητ||en||22 + Aτ2||en||22 ,

α= C(1+N4
1 )

η
+Cη ,

βn = ||Gn||22
η

.

(7.79)

This shows for ν small,

yn+1 − yn

τ
≤αyn +βn .
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Applying discrete Gronwall’s inequality, we have for m ≥ 2,

||em||22 ≤ C
(
X m −2ητ||em||22

)≤ Ce(m−1)τ· C(1+N4
1 )

η

(
X1 + Aτ2||e1||22 +

τ

η

m−1∑
n=1

||Gn||22
)

,

(7.80)

which gives

||um −vm||22

≤C ·exp

(
(m−1)τ · C(1+N4

1 )
η

)
·
(

3
2
||e1||22 −

1
2
||e0||22 +||e1 − e0||22

+Aτ2||e1||22 +
τ

η

m−1∑
n=1

||Gn||22
)

≤C ·exp

(
(m−1)τ · C(1+N4

1 )
η

)
· ((1+ Aτ2)||u1 −v1||22 +||u0 −v0||22

+τ
η

m−1∑
n=1

||Gn||22
)

.

(7.81)

7.4.2 Time Discretization of Allen-Cahn Equation

In this section, we will rewrite the PDE in terms of the second order

scheme.

Lemma 7.4.2. (Time discrete Allen-Cahn equation) Let u(t) be the exact so-

lution to Allen-Cahn equation with initial data u0 ∈ Hs, s ≥ 8. Define t0 = 0,
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t1 = τ1 and tm = τ1 + (m−1)τ for m ≥ 2. Then for any n ≥ 1,

3u(tn+1)−4u(tn)+u(tn−1)
2τ

= ν∆u(tn+1)− Aτ (u(tn+1)−u(tn))−ΠN [2 f (u(tn))− f (u(tn−1))]+Gn .
(7.82)

For any m ≥ 2,

τ
m−1∑
n=1

||Gn||22 . (1+ tm) · (τ4 +N−2s) .

Proof. The proof will be proceeded in several steps and we write . instead of

.A, ν, u0 for simplicity.

Step 1: We write the PDE in the discrete form in time.

Recall

∂tu = ν∆u− f (u) .

For a one variable function h(t), the following equation holds:

h(t)= h(t0)+h′(t0)(t− t0)+ 1
2

h′′(t0)(t− t0)2 + 1
2

∫ t

t0

h′′′(s)(s− t)2 ds . (7.83)

We then apply this to AC,


u(tn)= u(tn+1)−∂tu(tn+1) ·τ+ 1

2
∂ttu(tn+1)τ2 + 1

2

∫ tn

tn+1

∂tttu(s)(s− tn)2 ds

u(tn−1)= u(tn+1)−∂tu(tn+1) ·2τ+2∂ttu(tn+1)τ2 + 1
2

∫ tn−1

tn+1

∂tttu(s)(s− tn−1)2 ds.

(7.84)

As a result, we use second equation above-4×first equation and hence get
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3u(tn+1)−4u(tn)+u(tn−1)
2τ

= 1
2τ

(
2τ ·∂tu(tn+1)−2

∫ tn

tn+1

∂tttu(s)(s− tn)2 ds

+ 1
2

∫ tn−1

tn+1

∂tttu(s)(s− tn−1)2 ds
)

= ∂tu(tn+1)+ 1
τ

∫ tn+1

tn

∂tttu(s)(s− tn)2 ds− 1
4τ

∫ tn+1

tn−1

∂tttu(s)(s− tn−1)2 ds

= ν∆u(tn+1)− Aτ (u(tn+1)−u(tn))−ΠN [2 f (u(tn))− f (u(tn−1))]

+Aτ (u(tn+1)−u(tn))−Π>N [2 f (u(tn))− f (u(tn−1))]

+2 f (u(tn))− f (u(tn−1))− f (u(tn+1)

+1
τ

∫ tn+1

tn

∂tttu(s)(s− tn)2 ds− 1
4τ

∫ tn+1

tn−1

∂tttu(s)(s− tn−1)2 ds .

(7.85)

Clearly,

Gn =Aτ (u(tn+1)−u(tn))︸ ︷︷ ︸
I1

−Π>N [2 f (u(tn))− f (u(tn−1))]︸ ︷︷ ︸
I2

+2 f (u(tn))− f (u(tn−1))− f (u(tn+1)︸ ︷︷ ︸
I3

+ 1
τ

∫ tn+1

tn

∂tttu(s)(s− tn)2

︸ ︷︷ ︸
I4

ds− 1
4τ

∫ tn+1

tn−1

∂tttu(s)(s− tn−1)2 ds︸ ︷︷ ︸
I5

.

(7.86)

Step 2: We will estimate ||I1||2 ∼ ||I5||2.
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I1:

||I1||22 =||Aτ (u(tn+1)−u(tn)) ||22
.τ2||u(tn+1)−u(tn)||22

.τ2||
∫ tn+1

tn

∂tu(s) ds||22

.τ2
∫
T2

(∫ tn+1

tn

∂tu(s) ds
)2

.τ2
∫
T2

(
(
∫ tn+1

tn

|∂tu(s)|2 ds)1/2 ·pτ
)2

.τ2 ·τ ·
∫ tn+1

tn

||∂tu(s)||22 ds

.τ3
∫ tn+1

tn

||∂tu(s)||22 ds .

(7.87)

I2: By the maximum principle Lemma 4.2.2 proved in chapter 4 and u ∈
L∞

t Hs
x,

||I2||2 .N−s · (|| f (u(tn))||Hs +|| f (u(tn−1))||Hs )

.N−s .
(7.88)

I3: To bound I3, we recall that for a one-variable function h(t),

h(t)= h(t0)+h′(t0)(t− t0)−
∫ t

t0

h′′(s) · (s− t) ds . (7.89)

Then,


f (u(tn))= f (u(tn+1))−∂t( f (u))(tn+1) ·τ+

∫ tn+1

tn

∂tt( f (u)) · (s− tn) ds

f (u(tn−1))= f (u(tn+1))−∂t( f (u))(tn+1) ·2τ+
∫ tn+1

tn−1

∂tt( f (u)) · (s− tn−1) ds .

(7.90)
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Then we use second equation above-2×first equation and derive:

f (u(tn+1))−2 f (u(tn))+ f (u(tn−1))

=−2
∫ tn+1

tn

∂tt( f (u)) · (s− tn) ds+
∫ tn+1

tn−1

∂tt( f (u)) · (s− tn−1) ds .
(7.91)

As a result,

||I3||22 =|| f (u(tn+1))−2 f (u(tn))+ f (u(tn−1))||22

.||
∫ tn+1

tn

∂tt( f (u)) · (s− tn) ds||22 +||
∫ tn+1

tn−1

∂tt( f (u)) · (s− tn−1) ds||22

.τ2 · ||
∫ tn+1

tn

∂tt( f (u)) ds||22 +τ2 · ||
∫ tn+1

tn−1

∂tt( f (u)) ds||22

.τ3
∫ tn+1

tn−1

||∂tt( f (u))||22 ds ,

(7.92)

by a similar estimate in I1.

I4&I5:

||I4||22 +||I5||22

.
∥∥∥∥1
τ

∫ tn+1

tn

∂tttu(s)(s− tn)2 ds
∥∥∥∥2

2
+

∥∥∥∥1
τ

∫ tn+1

tn−1

∂tttu(s)(s− tn−1)2 ds
∥∥∥∥2

2

.
∥∥∥∥1
τ

∫ tn+1

tn−1

∂tttu(s) ·τ2 ds
∥∥∥∥2

2

.τ2 ·
∥∥∥∥∫ tn+1

tn−1

∂tttu(s) ds
∥∥∥∥2

2

.τ3
∫ tn+1

tn−1

||∂tttu(s)||22 ds .

(7.93)

Step 3: Estimate of τ ·∑m−1
n=1 ||Gn||22.
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Collecting estimates above, we have

τ ·
m−1∑
n=1

||Gn||22 =τ ·
m−1∑
n=1

(||I1||22 +||I2||22 +||I3||22 +||I4||22 +||I5||22)

. mτ ·N−2s +τ4 ·
∫ tm

0
||∂tu||22 +||∂tt( f (u))||22 +||∂tttu||22 ds̃ .

(7.94)

Note that 

∂ttu = ν∂t∆u−∂t( f (u))

∂tttu = ν∂tt∆u−∂tt( f (u))

∂t( f (u))= f ′(u)∂tu

∂tt( f (u))= f ′(u)∂ttu+ f ′′(u)(∂tu)2 ,

(7.95)

hence together with maximum principle and higher Sobolev bounds proved

in chapter 4, one has

τ ·
m−1∑
n=1

||Gn||22 . mτ ·N−2s +τ4 ·
∫ tm

0
||∂tu||22 +||∂tt( f (u))||22 +||∂tttu||22 ds̃

. tm ·N−2s +τ4 ·
∫ tm

0
||u||2Hs ds̃

. tm ·N−2s +τ4 · (1+ tm)

. (1+ tm) · (τ4 +N−2s) .

(7.96)
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7.4.3 Proof of L2 Error Estimate of Second Order Scheme I

(7.1)

First, assumptions in Proposition 3 are satisfied by the unconditional

Theorem 7.3.1 and maximum principle of Allen-Cahn equation. Thus we ap-

ply the auxiliary estimate Proposition 3. Then

||u(tm)−um||22 . eCmτ ·
(
(1+ Aτ2)||u1 −v1||22 +||u0 −v0||22 +τ

m−1∑
n=1

||Gn||22
)

.

(7.97)

By Lemma 7.2.2 and Lemma 7.4.2,

||u(tm)−um||22 . eCmτ ·
(
(1+ Aτ2)||u1 −v1||22 +||u0 −v0||22 +τ

m−1∑
n=1

||Gn||22
)

. eCtm · ((1+ Aτ2)(N−2s +τ4)+N−2s + (1+ tm) · (τ4 +N−2s)
)

. eCtm · (N−2s +τ4) .
(7.98)

Thus for m ≥ 2,

||u(tm)−um||2 . eCtm · (N−s +τ2) .

Remark 12. For the error estimate, we actually do not need that high regu-

larity of initial data because of a smoothing effect of Allen-Cahn equation.
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7.5 Introduction of Scheme II

In this section, we will introduce another second order scheme.

3un+1 −4un +un−1

2τ
= ν∆un+1 − A(un+1 −2un +un−1)−ΠN

(
2 f (un)− f (un−1)

)
,

(7.99)

where τ> 0 is the time step and n ≥ 1.

To start the iteration, we again need to derive u1 according to the follow-

ing first order scheme:


u1 −u0

τ1
= ν∆u1 −ΠN f (u0) ,

u0 =ΠN u0 ,

(7.100)

where τ1 = min{τ
4
3 , 1 , 1p

A+1
}. The choice of such τ is to guarantee the error

estimate as proved in section 7.2, and to ensure that the new modified energy

function can be controlled by initial data.

7.6 Estimate of the First Order Scheme (7.100)

In this section we will still estimate some bounds of u1 which will be used

to prove the stability of the second order scheme. It is slightly different from

scheme (7.2).

Lemma 7.6.1. Consider the scheme (7.100).


u1 −u0

τ1
= ν∆u1 −ΠN f (u0) ,

u0 =ΠN u0 ,

(7.101)
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where τ1 =min{τ
4
3 , 1 , 1p

A+1
}. Assume u0 ∈ H2(T2), then

E(u1)+ ||u1 −u0||22
τ1

+.E(u0) , ||u0||H2 1

(1+ A)||u1 −u0||22 .||u0||H2 (1+ν)2 .

(7.102)

Proof. The first inequality shares the same proof as in section 7.2, as the

scheme (7.100) is a refined version of (7.2).

For the second inequality, recall that ||u1||H2 .||u0||H2 , hence by (7.101)

1
τ1

||u1 −u0||2 ≤ ν||u1||H2 +|| f (u0)||2 .||u0||H2 1+ν . (7.103)

This implies

(A+1)||u1 −u0||22 .||u0||H2 (1+ν)2 . (7.104)

7.7 Conditional Stability of the Second Order

Scheme II (7.99) & (7.100)

In this section we will prove a conditional stability theorem for the second

order scheme (7.99) combining (7.100). To get started, we state the theorem

first.

Theorem 7.7.1. (Conditional Stability) Consider the scheme (7.99)-(7.100)

with ν> 0, τ> 0 and N ≥ 2. Assume u0 ∈ H2(T2). The initial energy is denoted

by E0 = E(u0). There exist constants Ci > 0, i = 1, 2, 3, 4 depending only on

E0 and ||u0||H2 , such that the following holds:
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Case 1: A = 0. If

τ≤


C1

ν4

1+| logν|2 , when 0< ν< 1 ;

C2
ν−2

1+| logν|2 , when ν≥ 1 .
(7.105)

then

E̊(un+1)≤ E̊(un) .

Case 2: A = constant · (ν−4 +ν2). If

τ≤


C3

ν2

1+| logν| , when 0< ν< 1 ;

C4
ν−1

1+| logν| , when ν≥ 1 .
(7.106)

then

E̊(un+1)≤ E̊(un) .

Here E̊(un) for n ≥ 1 is a modified energy functional and is defined as

E̊(un) := E(un)+ A+1
2

||un −un−1||22 +
1
4τ

||un −un−1||22 .

Before proving this stability theorem, we begin with several lemmas.

Lemma 7.7.2. Consider (7.99) for n ≥ 1. Suppose E(un) ≤ B · (1+ ν)2 and

E(un−1)≤ B · (1+ν)2 for some B > 0. Then

||un+1||∞ ≤αB ·
{
(ν

1
2 +ν−1) ·

√
1+ log(A+1)+| logν|+ | logτ|+1

}
,

for some αB > 0 only depending on B.
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Proof. For simplicity we write . instead of .B.

First note by the energy estimate,

||∇un−1||2 +||∇un||2 . ν−
1
2 (1+ν) , ||un−1||4 +||un||4 . (1+ν)

1
2 . (7.107)

Now rewrite the scheme (7.99) as

un+1 = 4+4Aτ
3+2Aτ−2ντ∆

un − 1+2Aτ
3+2Aτ−2ντ∆

un−1

− 2τΠN

3+2Aτ−2ντ∆
(
2 f (un)− f (un−1)

)
.

(7.108)

For Fourier mode k = 0,



4+4Aτ
3+2Aτ

. 1

1+2Aτ
3+2Aτ

. 1

2τ
3+2Aτ

.
1
A
. 1 .

(7.109)

Thus

|�un+1(0)|. 1 . (7.110)

For |k| ≥ 1, 

4+4Aτ
3+2Aτ+2ντ|k|2 . 1

1+2Aτ
3+2Aτ+2ντ|k|2 . 1

2τ
3+2Aτ+2ντ|k|2 .

1
ν|k|2 .

(7.111)
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This implies,

||un+1||Ḣ1 .||un||Ḣ1 +||un−1||Ḣ1 + 1
ν
||〈∇〉−1(2 f (un)− f (un−1))||2

.ν−
1
2 (1+ν)+ν−1 · (||(un)3||4/3 +||(un−1)3||4/3 +||un||2 +||un−1||2

)
.ν−

1
2 (1+ν)+ν−1 ·

(
(1+ν)

3
2 + (1+ν)

1
2

)
.ν−1 +ν 1

2 .
(7.112)

Similarly, 

4+4Aτ
3+2Aτ+2ντ|k|2 .

(
1
ντ

+ A
ν

)
· 1
|k|2

1+2Aτ
3+2Aτ+2ντ|k|2 .

(
1
ντ

+ A
ν

)
· 1
|k|2

2τ
3+2Aτ+2ντ|k|2 .

1
ν|k|2 .

(7.113)

Thus,

||un+1||Ḣ2 .
(

1
ντ

+ A
ν

)
· (||un||2 +||un−1||2

)+ 1
ν
||(2 f (un)− f (un−1))||2

.
(

1
ντ

+ A
ν

)
· (1+ν)

1
2 +ν−1 (||un||36 +||un−1||36 +||un||2 +||un−1||2

)
.

(
1
ντ

+ A
ν

)
· (1+ν)

1
2 +ν−1(ν−

3
2 (1+ν)3 + (1+ν)

1
2 )

.
1
ντ

+ A
ν
+ 1

ν
1
2 τ

+ A+1

ν
1
2

+ν− 5
2 +ν 1

2 ,

(7.114)

by a standard Sobolev’s inequality.

As a result, by the log interpolation inequality again,

||un+1||∞ . (ν
1
2 +ν−1) ·

√
1+ log(A+1)+| logν|+ | logτ|+1 . (7.115)
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7.7.1 Proof of Conditional Stability (Theorem 7.7.1)

Recall that

3un+1 −4un +un−1

2τ
−ν∆un+1 + A(un+1 −2un +un−1)

=−ΠN
(
2 f (un)− f (un−1)

)
.

(7.116)

We apply L2 inner product with δun+1 = un+1 −un on both sides of (7.116).

Recall that

(
3un+1 −4un +un−1 , un+1 −un)
= 2||δun+1||22 +

1
2

(||δun+1||22 −||δun||22 +||δ2un+1||22
)

.
(7.117)

Estimate of the LHS:

LHS=1
τ
||δun+1||22 +

1
4τ

(||δun+1||22 −||δun||22 +||δ2un+1||22
)

+ ν

2
(||∇un+1||22 −||∇un||22 +||δ∇un+1||22

)
+ A

2
(||δun+1||22 −||δun||22 +||δ2un+1||22

)
≥

[
ν

2
||∇un+1||22 +

1
4τ

||δun+1||22 +
A
2
||δun+1||22

]
−

[
ν

2
||∇un||22 +

1
4τ

||δun||22 +
A
2
||δun||22

]
+ 1
τ
||δun+1||22 +

A
2
||δ2un+1||22 .

(7.118)

Now it remains to estimate the RHS:
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RHS=− (
2 f (un)− f (un−1) , δun+1)

=(
2un −un−1 , δun+1)︸ ︷︷ ︸

I1

+(
(un−1)3 −2(un)3 , δun+1)︸ ︷︷ ︸

I2

.
(7.119)

I1 =
(−δ2un+1 , δun+1)+ (

un+1 , δun+1)
=− 1

2
(||δun+1||22 −||δun||22 +||δ2un+1||22

)
+ 1

2
(||un+1||22 −||un||22 +||δun+1||22

)
.

(7.120)

For I2, we use the identity un−1 = δ2un+1 +2un −un+1, then

(un−1)3 −2(un)3 =(δ2un+1 +2un −un+1)3 −2(un)3

=(δ2un+1)3 +3(δ2un+1)2(2un −un+1)+3δ2un+1(2un −un+1)2

+ (2un −un+1)3 −2(un)3 .
(7.121)

Note that,

3δ2un+1(2un −un+1)2 = 3δ2un+1(δ2un+1 −un−1)2

= 3(δ2un+1)3 −6(δ2un+1)2un−1 +3δ2un+1(un−1)2 .
(7.122)
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As a result,

(un−1)3 −2(un)3

=4(δ2un+1)3 + (δ2un+1)2(6un −3un+1 −6un−1)

+3δ2un+1(un−1)2 + (2un −un+1)3 −2(un)3

=(δ2un+1)2 · [4(un+1 −2un +un−1)+6un −3un+1 −6un−1]
+3δ2un+1(un−1)2 +6(un)3 −12(un)2un+1 +6un(un+1)2 − (un+1)3

=(δ2un+1)2 · (un+1 −2un −2un−1)+3δ2un+1(un−1)2

+6un(un+1 −un)2 − (un+1)3 .

(7.123)

Therefore we have,

|I2| ≤||δ2un+1||∞ · ||δ2un+1||2 · ||δun+1||2

· (||un+1||∞+2||un||∞+2||un−1||∞
)

+||δ2un+1||2 · ||δun+1||2 ·3||un−1||2∞
+ (

(δun+1)2 , 6un(un+1 −un)
)− (

(un+1)3 , δun+1)
.

(7.124)

Now note that

(un)4

4

=1
4

(un+1 −δun+1)4

=1
4

[
(un+1)4 −4(un+1)3δun+1 +6(un+1)2(δun+1)2 −4un+1(δun+1)3 + (δun+1)4]

= (un+1)4

4
− (un+1)3δun+1 + 1

4
(δun+1)2 [

6(un+1)2 −4un+1(un+1 −un)+ (un+1 −un)2]
= (un+1)4

4
− (un+1)3δun+1 + (δun+1)2

4
[
(un)2 +2unun+1 +3(un+1)2]

.
(7.125)
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Applying this identity,

(
(δun+1)2 , 6un(un+1 −un)

)− (
(un+1)3 , δun+1)

=
∫
T2

(un)4

4
−

∫
T2

(un+1)4

4
−

(
(δun+1)2 ,

25
4

(un)2 − 11
2

unun+1 + 3
4

(un+1)2
)

=
∫
T2

(un)4

4
−

∫
T2

(un+1)4

4
−

(
(δun+1)2 ,

25
4

(un − 11
25

un+1)2
)

+ 23
50

(
(δun+1)2 , (un+1)2)

.
(7.126)

Note that

||δ2un+1||∞ ≤ 4max
{||un−1||∞, ||un||∞, ||un+1||∞

}
,

RHS

≤− 1
4
||un+1||44 +

1
2
||un+1||22 −

1
2
||δun+1||22

+ 1
4
||un||44 −

1
2
||un||22 +

1
2
||δun||22

− 1
2
||δ2un+1||22 +||δun+1||22 ·

(
1
2
+ 23

50
||un+1||2∞

)
+||δ2un+1||2 · ||δun+1||2 ·23max

{||un−1||2∞, ||un||2∞, ||un+1||2∞
}

.

(7.127)

Recall that

E(u)= ν

2
||∇u||22 +

1
4
||u||44 −

1
2
||u||22 +

1
4
·m(T2) ,

where m(T2) is the measure of T2. Hence by comparing the LHS and the

RHS of (7.126), we get
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E(un+1)+ 1
4τ

||δun+1||22 +
A+1

2
||δun+1||22

≤E(un)+ 1
4τ

||δun||22 +
A+1

2
||δun||22

+||δ2un+1||2 · ||δun+1||2 ·23max
{||un−1||2∞, ||un||2∞, ||un+1||2∞

}
−

{
A+1

2
||δ2un+1||22 +

(
1
τ
− 1

2
− 23

50
||un+1||2∞

)
· ||δun+1||22

}
.

(7.128)

Clearly, to show the desired energy decay, it suffices to require

2(A+1)
(

1
τ
− 1

2
− 23

50
||un+1||2∞

)
≥ 529max

{||un−1||4∞, ||un||4∞, ||un+1||4∞
}

.
(7.129)

As usual, we will prove inductively. Set

B =max
{
E̊(u1) . E(u0)

}
,

By Lemma 7.6.1 in previous section, B . 1. We shall prove for every m ≥ 2,


E̊(um)≤ B · (1+ν)2 , E̊(um)≤ E̊(um−1) ,

||um||∞ ≤αB ·
[
(ν

1
2 +ν−1) ·

√
1+ log(A+1)+| logν|+ | logτ|+1

]
,

(7.130)

where αB > 0 is the same constant in Lemma 7.7.2.

It suffices to verify the main inequality (7.129):

2(A+1)
(

1
τ
− 1

2
−C1 −C1 · (ν−2 +ν) · (1+ log(A+1)+| logν|+ | logτ|)

)
> C2(ν−4 +ν2) · (1+| log(A+1)|2 +| logν|2 +| logτ|2)+C2 .

(7.131)
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Case 1: A = 0. Then we need

1
τ
À (ν−4 +ν2) · (1+| logν|2 +| logτ|2)+1 . (7.132)

If 0< ν< 1, then we need

τ¿ ν4

1+| logν|2 ; (7.133)

If ν≥ 1, then we need

τ¿ ν−2

1+| logν|2 . (7.134)

Case 2: A = const · (ν2 +ν−4). In this case,

1
τ
À (ν−2 +ν) · (1+| log(A+1)|+ | logν|+ | logτ|)+| logν|2 +| logτ|2 +1 .

(7.135)

If 0< ν< 1, then we need

τ¿ ν2

1+| logν| ; (7.136)

If ν≥ 1, then we need

τ¿ ν−1

1+| logν| . (7.137)

This completes the proof.
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Chapter 8

Conclusion & Future Work

Throughout this thesis, we discussed first order and second order semi-

implicit Fourier spectral methods on Allen-Cahn equation and fractional Cahn-

Hilliard equation in both two dimensional and three dimensional cases. We

proved the stability of the first order numerical scheme by adding a stabi-

lizing term A(un+1 − un) and A(−∆)α(un+1 − un) with a large constant A at

least of size O(ν−1| log(ν)|) for 2D case and O(ν−3) for 3D case. Note that this

stability is preserved independent of time step τ. We also proved a L2 er-

ror estimate between numerical solutions from the semi-implicit scheme and

exact solutions. We proved stability results and L2 error estimates for two

second order schemes as well.

Future work could be done in other gradient cases such as G = Π0, the

zero-mass projected Allen-Cahn equation and G =−∆(id−∆)−1, the normal-

ized Cahn-Hilliard equation could be studied as well.
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