
Analytical and Numerical Results for
Phase Field, Implicit Free Boundary,

and Fluid Models
by

Xinyu Cheng

B.Sc., The Chinese University of Hong Kong, 2015
M.Sc., The University of British Columbia, 2017

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September 2021

© Xinyu Cheng 2021



The following individuals certify that they have read, and recommend to the

Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis enti-

tled:

Analytical and Numerical Results for Phase Field, Implicit Free Bound-

ary, and Fluid Models

submitted by Xinyu Cheng in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Mathematics.

Examining Committee:

Brian Wetton, Professor, Mathematics, UBC

Supervisor

Tai-Peng Tsai, Professor, Mathematics, UBC

Supervisory Committee Member

Eldad Haber, Professor, EOAS, UBC

University Examiner

Ian Frigaard, Professor, Mathematics and Mechanics, UBC

University Examiner

Hongjie Dong, Professor, Applied Mathematics, Brown University

External Examiner

Additional Supervisory Committee Members:

Dong Li, Professor, Mathematics, SUSTech

Supervisory Committee Member

Stephen Gustafson, Professor, Mathematics, UBC

Supervisory Committee Member

ii



Abstract

In this dissertation, we study analytical and numerical methods on three

topics in the area of partial differential equations (PDE). These topics are:

the Allen-Cahn dynamics (AC) in the study of phase field models for mate-

rials science problems, the Oxygen depletion model (OD) in the study of free

boundary problems, and the stationary surface quasi-geostrophic equation

(SQG) in the study of fluid dynamics. We first study the behaviour in the

meta-stable regime of AC and show by computation evidence and asymptotic

analysis that backward Euler method satisfies energy stability with large

time steps. We also give a rigorous proof for the two-dimensional radially

symmetric case. In the second project, we show several mathematical formu-

lations of OD from the literature and give a new formulation based on a gra-

dient flow with constraint. We prove the equivalence of all formulations and

study the numerical approximations of the problem that arise from the differ-

ent formulations. More general (vector, higher order) implicit free boundary

value problems are discussed. In the final project, we develop a new frame-

work of “convex integration scheme” and construct a non-trivial solution to

the stationary SQG. We thus prove the non-uniqueness of the solutions to

the stationary SQG.
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Lay Summary

This thesis studies the Allen-Cahn dynamics (AC), oxygen depletion prob-

lem (OD) and surface quasi-geostrophic equation (SQG), which are interest-

ing topics in the area of partial differential equations. These equations model

phenomena in material science, biology and fluid dynamics. We study AC and

OD dynamics by implementing backward Euler numerical schemes, while for

SQG we construct a non-trivial solution by applying a newly developed con-

vex integration scheme.
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Preface

This thesis is based on original research projects by the author and the

contents of research articles that are published or submitted for publication

to research journals from this thesis are presented below. Contributions of

collaborators in each research article will be clarified.

Chapter 3 is based on the paper “X. Cheng, D. Li, K. Promislow and B.

Wetton. Asymptotic behaviour of time stepping methods for phase field mod-

els. Journal of scientific computing, 86(3), 1-34, 2021” [19], which has been

published. The framework and methodology of this project was developed

by the author, D. Li, K. Promislow and B. Wetton. The author contributes

25% of the research framework, implementation of the new method and de-

tailed computations including 50% of the work in the asymptotic analysis and

rigorous radial analysis of AC with BE. The author was not involved in the

computational aspect of the work.

Chapter 4 is based on the paper “X. Cheng, Z. Fu and B. Wetton. Equiv-

alent formulations of the oxygen depletion problem, other implicit free bound-

ary value problems, and implications for numerical approximation, arXiv:2105.

03538, 2021” [17], which has been submitted and put on arXiv. The research

and preparation of the manuscript were done by the author, Z. Fu and B. Wet-

ton in equal parts. The author contributes 50% to the research framework
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and methodology including the rigorous analysis of different formulations

and proof of the equivalence. The author was not involved in the computa-

tional aspect of this work.

Chapter 5 is based on the paper “X. Cheng, H. Kwon and D. Li. Non-

uniqueness of steady-state weak solutions to the surface quasi-geostrophic

equations. arXiv:2007.09591, 2020” [18], which has been submitted and un-

der review. The development of the new systematic method and the manuscript

composition were carried out together by the author, H. Kwon and D. Li. The

author contributes 33.3% to the work including developing original research

scheme, parameter computations and manuscript composition.
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Chapter 1

Introduction

Partial differential equations (PDE) often describe mathematical models

of physical, biological, or financial phenomena. For example, generalized

nonlinear wave equations describe the properties of waves including sound

waves, light waves, elastic waves and other waves, which help us to study

physical phenomena including noise and music [26], electromagnetics [32, 61]

and fluid dynamics [71].

Equations that accurately describe these physical phenomena are the ba-

sis of simulation tools that allow inexpensive virtual experiments and design

optimization. It is important to understand the properties of the equations

well in order to design accurate and efficient computational approximation

methods. Analytic properties of the equations can themselves give insight

into the behavior of the systems.

To study PDE, we are interested in the solutions to a partial differential

equation in some domain under specific initial conditions and boundary con-

ditions. For example, in the study of Tsunamis, the domain is the ocean, the

boundary conditions describe how the waves interact with the shore and the

initial conditions could be an approximation of the ocean’s early response to

an earthquake. More information about the solutions can help the physical

1



Chapter 1. Introduction

models to be better understood. In mathematics, usually the focus of study

is on the existence, uniqueness, regularity (“degree of smoothness”) and the

dynamical behavior of the solutions. Existence, uniqueness and regularity

are often investigated with analytic tools such as fixed point theorems, the

method of calculus of variation, and iteration methods, which will be intro-

duced in Chapter 2. Although sometimes it is possible to find explicit solu-

tions of certain simple PDEs such as Laplace’s equation and heat equation,

usually there are no explicit solutions. Thus, it is necessary to compute ap-

proximate solutions using computer simulations. Throughout the area of par-

tial differential equations, it is necessary to develop well behaved numerical

schemes that are guaranteed to approximate PDEs to an expected accuracy

and that preserve important solution properties.

In the spirit of these ideas (analytic properties of PDEs and their rela-

tionship to their numerical approximation), three main research topics will

Figure 1.1: Computational Simulation of 2D Waves [94]
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Chapter 1. Introduction

be presented in this dissertation. These topics are: the Allen-Cahn dynamics

(AC), the oxygen depletion problem (OD) and the surface quasi-geostrophic

equation (SQG). They correspond to the research areas of materials science,

free boundary problems and fluid dynamics respectively.

These topics are popular research areas in the study of partial differential

equations. The phase field models we consider are of nonlinear diffusion type;

the free boundary problem also has a diffusion term with nonlinearity intro-

duced by the location of the free boundary. In both cases we consider implicit

time stepping of the dynamics, motivated by the numerical approximations

of the problems. In general, we consider equations of the form

∂tu =∆u+ g(u)

with some nonlinearity g(u). The left hand side (LHS) is the rate of change

of a quantity u with respect to time at a particular point. The second term

on the right hand side (RHS) is a local reaction term that is generated more

of the quantity u (if g(u) > 0) ir reduces u (if g(u) < 0). The first term on the

RHS is a term that represents diffusion, that is, there exists a flux of u from

regions with large values of u to regions of small values of u.

Fully-implicit schemes discretize time derivative and treat both diffusion

and nonlinearity as an implicit problem for the next time step:

un+1 −un

k
=∆un+1 + g(un+1)

where k is size of each time step, un is the solution from the previous step and

3



Chapter 1. Introduction

un+1 needs to be solved. This equation represents an approximation of the

solution which is discretized in time. Instead of u(t) with time continuous,

we have un ≈ u(nk). The equation represents the map from un to un+1. It is

an implicit equation and a nonlinear, nonlocal problem and must be solved at

each time step to find un+1 from un. Under certain conditions, it can be shown

that the time discrete approximation is convergent (increasingly accurate as

k gets smaller). It is known that some form of implicit time stepping is needed

to allow reasonable time steps in numerical approximation of these problems.

In a subsequent step, the spatially continuous solution is approximated using

a finite number of values on a grid.

More specifically, in the first part of this dissertation we are interested in

the behaviour in the meta-stable regime of AC (solutions spend a long time

near a state that is not a stationary solution and eventually change rapidly)

as the small length scale ε→ 0, where ε parametrizes the width of the layer

where phase changes. Various time-stepping schemes have been applied in

the literature to study such behavior including energy stable schemes where

stability can be attained with help of large stabilizers but at the cost of the ac-

curacy. Fully-implicit backward Euler scheme, however, gives more accurate

approximation without a guarantee of energy stability. We will show by com-

putation evidence and asymptotic analysis that the backward Euler method

satisfies the energy stability in the meta-stable regime with large time steps.

We will also give a rigorous proof for the two-dimensional radially symmetric

case.

In the second part of this thesis we study the OD problem, which has a

moving boundary whose location in time is part of the problem to be solved.

4



Chapter 1. Introduction

We show the equivalence of several different formulations of the problem in-

cluding an energy gradient flow, a variational inequality, and a fixed bound-

ary mapping method. The energy gradient flow formulation is new in the

literature and we show a convergence result for a numerical scheme based

on it.

In the third part of this dissertation, we are interested in the uniqueness

and regularity of solutions to a PDE, arising from the study of fluid dynamics.

Fluids usually follow certain energy (entropy, etc.) conservation laws, how-

ever poor regularity may cause the break down of such conservation. This

phenomenon is called energy cascade [41], which has been studied by experi-

mental physics. These phenomena indicate that lack of smoothness can lead

to a break down of conservation and therefore it is natural to investigate

what function spaces represent the minimal amount of smoothness required

for the conservation laws to hold, which is known as the Onsager conjectures

[67]. In this part of the thesis we focus on a stationary two-dimensional SQG

system. SQG has applications to both meteorological and oceanic flow [68]

and it is known to be a simplified model for incompressible Euler equations.

We then develop a new framework of the “convex integration scheme” and

implement it to construct a non-trivial solution to the stationary SQG. This

proof of non-uniqueness of the stationary SQG system may be relevant to the

long standing open problem of uniqueness of solutions to the Euler equations

as in [67] which are fundamental equations in the study of fluid mechanics.

The structure of this thesis is organized as follows. Notation and pre-

liminaries will be introduced in Chapter 2; we study the dynamics of AC in

Chapter 3 and the free boundary dynamics of OD can be seen in Chapter 4.

5
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Finally, we present the non-uniqueness of SQG in Chapter 5. Conclusions

and remarks for future work can be found in Chapter 6.

6



Chapter 2

Notation and preliminaries

2.1 Notation and definitions

2.1.1 O(h(x)) and o(h(x))

We say that a function f (x) is O(h(x)) if there exists a positive absolute

constant C such that | f (x)| ≤ C|h(x)| for any x. We say that f (x) is o(h(x)) if

limx→0
f (x)
h(x) = 0 or limx→∞

f (x)
h(x) = 0 depending on the context.

2.1.2 . and ¿

We say two positive quantities A . B if there exists a positive absolute

constant C such that A ≤ C ·B. Similarly, A & B means A ≥ CB, and A ∼ B

when A .B and A &B.

We say two positive quantities A ¿ B if A/B is “small”, where “small

enough” is clear from the context.

7



2.1. Notation and definitions

2.1.3 Lp Space

Assume the domain Ω is given. If 1 ≤ p <∞, the space Lp(Ω) consists of

all complex-valued measurable functions that satisfy

∫
Ω
| f (x)|p dx <∞ .

For f ∈ Lp(Ω) we define the Lp norm of f by

‖ f ‖Lp(Ω) =
(∫
Ω
| f (x)|p dx

)1/p
.

2.1.4 Weak Derivatives and Sobolev Space

We use the notation below:

x = (x1, x2, ..., xn) ∈Rn

α= (α1,α2, ...,αn) ∈Zn
+

∂α f = ∂α1+...+αn f
∂
α1
x1 ∂

α2
x2 ...∂αn

xn

.

(2.1.1)

We define the weak derivative in the following sense: For u, v ∈ L1
loc(Ω),

(i.e they are locally integrable); ∀φ ∈ C∞
0 (Ω), i.e φ is infinitely differentiable

(smooth) and compactly supported; and

∫
Ω

u(x) ∂αφ(x) dx = (−1)α1+...+αn

∫
Ω

v(x) φ(x) dx,

then v is defined to be the weak partial derivative of u, denoted by ∂αu. If u

is “smooth” enough, its weak derivative coincides with its derivative and the

8



2.1. Notation and definitions

equation above is basically integration by parts.

Suppose u ∈ Lp(Ω) and all weak derivatives ∂αu exist for |α| = α1 + ...+
αn ≤ k , such that ∂αu ∈ Lp(Ω) for |α| ≤ k, then we say u ∈Wk,p(Ω), and such

space is called Sobolev space. The norm in Wk,p(Ω) is defined as :

‖u‖Wk,p(Ω) =
( ∑
|α|≤k

∫
Ω
|∂αu|p dx

) 1
p

.

Throughout this dissertation, for p = 2 case, we use the convention Hk(Ω)

denote the space Wk,2(Ω). For more details, we refer to chapter 5, [34].

2.1.5 Fourier Transform

In this thesis we use the following convention for Fourier expansion on

Td := (R/(2π))d:

f (x)= 1
(2π)d

∑
k∈Zd

f̂ (k)eik·x , f̂ (k)=
∫
Ω

f (x)e−ik·x dx .

Taking advantage of the Fourier expansion, we define the equivalent Hs-

norm and Ḣs-norm of function f by

‖ f ‖Hs = 1
(2π)d/2

( ∑
k∈Zd

(1+|k|2s)| f̂ (k)|2
) 1

2

, ‖ f ‖Ḣs = 1
(2π)d/2

( ∑
k∈Zd

|k|2s| f̂ (k)|2
) 1

2

.

The equivalence of two norms are well known, we refer to Appendix A in [83].

9



2.1. Notation and definitions

2.1.6 Convergence of Fourier Series in Periodic Domains

Given f being a Lp(Td) periodic function for p > 1, and denote the Dirich-

let partial sum DN f := 1
(2π)d

∑
|k|≤N f̂ (k)eik·x, then

‖DN f − f ‖Lp(Td)) → 0 , and DN f → f pointwise almost everywhere . (2.1.2)

This was originally proved by Carleson in [13].

2.1.7 Banach Fixed-point Theorem

Given a Banach space (X ,‖.‖) and a contraction map T : X → X s.t ‖T(x)−
T(y)‖ ≤β‖x− y‖ with 0<β< 1, then there exists a fix-point x, s.t T(x)= x. We

refer to [34] for details.

2.1.8 Duhamel’s Formula

Consider a linear inhomogeneous evolution equation for a function u(x, t) :

Ω× (0,∞)→R, with a spatial domain Ω⊂Rd, of the form


ut(x, t)−Lu(x, t)= f (x, t) , (x, t) ∈Ω× (0,∞)

u|∂Ω = 0

u(x,0)= u0(x) , x ∈Ω ,

(2.1.3)

where L is a linear differential operator that involves no time derivatives

and the boundary condition could be replaced by periodic boundary condition.

10
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Then formally, the solution to this equation system is:

u(x, t)= eLtu0 +
∫ t

0
eL(t−s) f ds (2.1.4)

where eLt is the homogeneous solution operator, or eLtu0 solves the homoge-

neous equation with initial data u0. In fact eLtu0 is often given as a convolu-

tion between a well-defined kernel and the initial data u0. For more details,

we refer to [34].

2.2 Several Important Inequalities

2.2.1 Hölder’s Inequality

Given f ∈ Lp(Ω) and g ∈ Lq(Ω), such that 1
p + 1

q = 1 then

‖ f g‖L1(Ω) ≤ ‖ f ‖Lp(Ω)‖g‖Lq(Ω).

2.2.2 Young’s Inequality

Given a,b, p, q positive real numbers, such that 1
p + 1

q = 1, then

ab ≤ ap

p
+ bq

q
.

2.2.3 Morrey’s Inequality

Assume Ω is a bounded Lipschitz domain in Rd with d ≤ 3 and f ∈ H2(Ω)

then

‖ f ‖L∞(Ω) . ‖ f ‖H2(Ω) .

11
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In fact a stronger statement can be made with the help of Hölder space as in

[34].

2.2.4 Gagliardo–Nirenberg Interpolation Inequality

For functions u : Ω→ R defined on a bounded Lipschitz domain Ω ⊂ Rd,

fix 1≤ q, r ≤∞ and a natural number m. Suppose also that a real number α

and a natural number j are such that

1
p
= j

d
+

(
1
r
− m

d

)
α+ 1−α

q

and
j

m
≤α≤ 1 .

Then

‖D ju‖Lp ≤ C1(Ω)‖Dmu‖αLr‖u‖1−α
Lq +C2(Ω)‖u‖Ls

where s > 0 is arbitrary. We refer to [34].

12



Chapter 3

Stability and accuracy of

time stepping schemes on

phase field models

In this chapter we will consider two phase field models: Allen-Cahn (AC)

and Cahn-Hilliard (CH) equations. The (AC) model was developed in [2]

by Allen and Cahn to study the competition of crystal grain orientations in

an annealing process; while the (CH) was introduced in [12] by Cahn and

Hilliard to describe the process of phase separation of different metals in a

binary alloy. These equations are presented as:


∂tu =∆u− f (u)

ε2 , (x, t) ∈Ω× (0,∞)

u(x,0)= u0

, (AC)

and 
∂tu =−ε∆∆u+ ∆ f (u)

ε
, (x, t) ∈Ω× (0,∞)

u(x,0)= u0

, (CH)

13



Chapter 3. Stability and accuracy of time stepping schemes on phase field models

where u(x, t) is a real valued function and values of u in (−1,1) represent a

mixture of the two phases, with −1 representing the pure state of one phase

and +1 representing the pure state of the other phase. Vector position x is in

the spatial domain Ω, which is taken to be two or three dimensional periodic

domain in this work, and t is time. Here ε is a small parameter representing

an average distance over which phases mix. The energy term f (u) is often

chosen to be

f (u)=W ′(u)= u3 −u , W(u)= 1
4

(u2 −1)2.

It is well known that, as ε→ 0, the limiting problem of (AC) is given by

a mean curvature flow while the limiting problem of (CH) becomes Mullins-

Sekerka problem [66]; we refer to [46] for AC and [69], [1] for CH, where

asymptotic and rigorous analysis are provided. More detail can be found in

section 3.3. Although the limiting behavior of AC and CH are well known,

there are related materials science models that are studied only numerically

and this current chapter presents ideas about how to approach these models

in an appropriate way numerically.

Adaptive time stepping methods for metastable dynamics of the Allen-

Cahn and Cahn-Hilliard equations are investigated in the spatially continu-

ous, semi-discrete setting. In this chapter we analyse the performance of a

number of first and second order methods, formally predicting step sizes re-

quired to satisfy specified local truncation error σ in the limit of small length

scale parameter ε→ 0 during meta-stable dynamics. The formal predictions

are made under stability assumptions that include the preservation of the

asymptotic structure of the diffuse interface, a concept we call profile fidelity.
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3.1. Discussion

In this setting, definite statements about the relative behaviour of time step-

ping methods can be made. Some methods, including all so-called energy

stable methods but also some fully implicit methods, require asymptotically

more time steps than others. The formal analysis is confirmed in computa-

tional studies. We observe that some provably energy stable methods popular

in the literature perform worse than some more standard schemes. We show

further that when Backward Euler is applied to meta-stable Allen-Cahn dy-

namics, the energy decay and profile fidelity properties for these discretiza-

tions are preserved for much larger time steps than previous analysis would

suggest. The results are established asymptotically for general interfaces,

with a rigorous proof for radial interfaces. It is shown analytically and com-

putationally that for most reaction terms, Eyre type time stepping performs

asymptotically worse due to loss of profile fidelity.

3.1 Discussion

The mathematical literature for computational methods for AC dynam-

ics, and its higher order relative CH dynamics, is dominated by the proposal,

use, and analysis of so-called energy stable schemes [76, 85, 90]. AC and CH

dynamics are gradient flows on an energy functional, and the solution should

decrease that energy in time. Energy stable schemes guarantee that decrease

no matter what time step is chosen. This is a desirable property not shared

by standard fully implicit, semi-implicit (IMEX), or exponential integrator

time stepping methods. We will show in this work that some (but not all)

fully implicit methods can outperform energy stable schemes when subject to
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3.1. Discussion

fixed accuracy requirements. The recent article [91] gives especially clear ev-

idence that when time steps are chosen appropriately, fully implicit methods

are conditionally energy stable, and further that the large time steps allowed

by energy stable schemes can come at the cost of significant loss of accuracy.

We show that in the meta-stable dynamic regime of AC and CH, some fully

implicit methods can take optimally sized time steps. By optimal, we mean

the asymptotically largest time steps as the order parameter ε→ 0 that sat-

isfy a given local error tolerance. Here, ε represents the width of interfacial

layers in metastable dynamics and, like the authors of [91], we use the form

of the equations scaled so that these dynamics transpire in an O(1) time scale.

When the dynamics are in this metastable regime, which dominates the time

of typical phenomena of interest, definite statements about the behaviour of

different time stepping methods can be made. This criteria does not take into

account solver efficiency. However, we can make definite statements on how

efficient solvers for nonlinear implicit time stepping need to be to outperform

other methods.

A combination of asymptotic analysis and careful computational work

backs up our claims. In addition, we present a rigorous result for implicit

time stepping for meta-stable AC dynamics in radial geometry that shows

that asymptotically larger time steps can be taken than previous analysis

would suggest. These time steps preserve the diffuse interface structure (a

property that we call proflie fidelity) and also the energy decay property of

the equations. This result is shown for a class of reaction terms. An interest-

ing result in Section 3.6.2 shows that Eyre-type time stepping can perform

asymptotically worse with most reaction terms, while implicit time stepping
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3.1. Discussion

has uniform asymptotic behaviour over a class of reaction terms. This was

predicted by the analysis and confirmed computationally.

Our study focuses on pure materials science applications rather than the

use of Cahn-Hilliard equations to track interfaces in so-called diffuse inter-

face methods [93] in which the CH dynamics are coupled to other physics.

We consider the simplest form of AC and CH dynamics, whose Gamma limit

(as ε→ 0) is well understood and use that well known structure to gain in-

sight into the behaviour of the schemes. The authors believe that the insight

gained from these studies will also apply to schemes used for other materials

science models which are less well understood.

We consider a number of first and second order time stepping schemes:

the energy stable Eyre’s method [35]; Backward (Implicit) Euler (BE) [43];

Trapezoidal Rule (TR) [43]; Second order Backward Differentiation Formula

(BDF2) [43]; Secant [33]; standard semi-implicit (linear IMEX) methods of

first and second order [4]; first and second order Scalar Auxiliary Methods

(SAV) [76] for which a modified energy stability can be proved; and finally

a second order Singular Diagonally Implicit Runge Kutta method with good

stability properties (DIRK2) [43]. The resulting implicit systems are consid-

ered in the spatially continuous semi-discrete setting in a 2D periodic do-

main, with numerical validation done with a suitably refined Fourier spec-

tral approximation. Time step schemes that result in nonlinear systems are

solved with Newton’s iterations using the Preconditioned Conjugate Gradi-

ent Solver (PCG) developed in [21] at each iteration. Adaptive time stepping

is done based on a user-specified local error tolerance σ. The variation of

the number of time steps with ε for fixed σ is predicted based on formal con-
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3.1. Discussion

sideration of the local truncation error of the schemes in the metastable dy-

namics. The formal predictions are then validated in computational studies.

With this criteria, first order BE performs better (asymptotically fewer time

steps as ε→ 0) than Eyre and first order IMEX and SAV. Second order TR

and BDF2 perform better than Secant, DIRK2, and second order IMEX and

SAV. The difference in both cases is asymptotically larger for CH than AC.

These comparisons are also valid for computational time, using PCG counts

as the measure, to similar accuracy. It is seen that optimal numbers of time

steps are obtained when the dominant local truncation error is a higher or-

der time derivative. This observation may have application in other systems

with metastable dynamics. We observe that standard IMEX methods per-

form almost identically to SAV methods of the same order in the scenario we

consider, at reduced computational cost.

It is observed that the global accuracy of BE is better than a naïve predic-

tion based on the size of the local truncation error would suggest. A formal

analysis of the scheme for the AC case shows that the dominant error made

in one time step is asymptotically smaller than expected. This is due to a spe-

cial structure of the local truncation error for BE, in which the asymptotically

largest term lies in a strongly damped space.

We introduce the equations and numerical schemes in Section 3.2 with

some introductory analysis. The scaling for AC and CH is chosen so that the

metastable interface dynamics (approximate curvature motion for AC and

Mullins-Sekerka flow for CH) occurs in O(1) time. In Section 3.3 we exam-

ine the metastable dynamics of the equations and make predictions for the

behaviour of the time steps with ε and local error tolerance σ under stabil-
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ity assumptions which are verified numerically in Section 3.4. We give an

asymptotic analysis for the surprising accuracy and stability properties for

BE with large time steps applied to AC in Section 3.5. In Section 3.6 we

present the rigorous result for BE applied to AC with large time steps and

also show the loss of profile fidelity for Eyre-type time stepping for most re-

action terms.

3.2 Equations and Schemes

We consider the simplest form of the AC dynamics for u(x, t) given by

ut =∆u− 1
ε2 f (u) (3.2.1)

where f (u) = u3 −u is the classical form of the reaction term. More general,

smooth reaction terms are considered in Section 3.6. Non-smooth reaction

terms and degenerate mobility are also of interest in some material science

applications and there are stability and convergence results for implicit time

stepping applied to these problems in [5, 7] for example. However, the asymp-

totic behaviour of time stepping schemes for these problems is not clear.

CH dynamics is described by a higher order partial differential equation

ut =−ε∆∆u+ 1
ε
∆ f (u). (3.2.2)

For computational simplicity, we consider the two-dimensional (2D) cases of

these equations in a doubly periodic cell T2 := [0,2π]2. The time scaling in

the equations above is chosen to give sharp interface (as ε → 0) motion in
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3.2. Equations and Schemes

O(1) time. The sharp interface limit yields curvature driven flow for AC and

a nonlocal Mullins-Sekerka flow for CH [66]. Both types of dynamics have an

associated energy functional

E =
∫ (|∇u|2/2+W(u)/ε2)

(3.2.3)

where W(u) = 1
4 (u2 −1)2 and the reaction term f (u) =W ′(u). The energy E (t)

is monotonically decreasing due to the gradient flow nature of the dynamics.

For AC the gradient is in L2 and for CH it is H−1.

3.2.1 Time stepping

Backward Euler

We consider the simplest implicit scheme, first order Backward Euler

(BE), also known as Implicit Euler. Applied to (3.2.1) keeping space con-

tinuous, we have
un+1 −un

kn
=∆un+1 − 1

ε2 f (un+1) .

where un(x) approximates the exact solution u(x, tn) and kn = tn+1− tn is the

time step. We use the classical f (u) = u3 −u as mentioned above. Dropping

the subscript on the time step and the unknown solution at time level n+1

we have the nonlinear problem

u−k∆u+ k
ε2 f (u)= un (3.2.4)

for u given un.
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3.2. Equations and Schemes

Definition 1. A time stepping scheme is said to have the energy decay prop-

erty if E (un+1)≤ E (un).

This property could be conditional on the choice of time step size. Addi-

tionally, it could depend on un. If a scheme has the energy decay property for

any un and k, the scheme is called unconditionally energy stable.

Theorem 1. Consider (3.2.4), assume that un ∈ H2(Ω) and un takes values

in [−1,1], then there exists u ∈ H2(Ω) that solves (3.2.4) with values in [−1,1].

Define f∞ :=max{| f ′(s)|, s ∈ [−1,1]}, then if k ≤ 2ε2/ f∞ the solution u is unique

and satisfies the energy decay property. Note that the energy stability result

was established earlier in [91] with a different proof.

Proof. The existence of u follows from the standard method of sub-/super-

solutions using comparison functions −1 and +1. To establish uniqueness,

we assume u1 and u2 are solutions. Then their difference w = u1 − u2 is a

solution of

(1−k∆)w =−k · f (u1)− f (u2)
ε2 =− k

ε2 · f ′(s(x))w ,

where s takes values between u1 and u2, and hence in [−1,1]. Isolating w

leads to the elliptic problem

[
1+ kf ′(s)

ε2 −k∆
]

w = 0,

and if k < ε2/ f∞ then the corresponding elliptic operator is strictly positive

and w is zero by the maximum principle. To establish energy decay, we take
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the inner product of (3.2.4) with the test function u−un:

1
k

∫
|u−un|2 + 1

2

∫ (|∇u|2 −|∇un|2 +|∇u−∇un|2
)=− 1

ε2 ( f (u), (u−un)) .

From the Fundamental Theorem of Calculus we develop the expansion,

|F(u)−F(un)− f (u)(u−un)| =
∣∣∣∣∫ un

u
f ′(s)(s−un) ds

∣∣∣∣≤ f∞
2

(u−un)2.

Using this relation to eliminate f (u) yields the equality,

(
1
k
− f∞

2ε2 )
∫

|u−un|2 +E[u]−E[un]≤ 0.

This implies the desired energy decay for k < 2ε2/ f∞. The theorem is also

true when homogeneous Neumann boundary conditions are specified.

Thus we have existence of solutions to (3.2.4) for any time step size, and

uniqueness and energy stability under the resitriction k ≤ 2ε2/ f∞. This is true

for any un under the restrictions of the Theorem. We shall see in Section 3.6

that asympoticaly larger time steps k = o(ε) can be taken when the dynamics

are slow (interface motion) with locally unique, energy stable solutions. This

is verified in computational tests.

Eyre’s Method

An alternative first order scheme to fully implicit BE was proposed by

Eyre [35]:

u−k∆u+ k
ε2 u3 = un + k

ε2 un (3.2.5)
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The scheme is derived conceptually by keeping a convex part of the reaction

term f (u) = u3 −u implicit and a concave part explicit. In this sense, it is an

IMEX method but an unusual one since a nonlinear term is kept implicit and

a linear term is handled explicitly. The method has appealing properties:

Theorem 2 (from [35]). The time step (3.2.5) has a unique solution u for any

un and k that is unconditionally energy stable.

Additional first order schemes considered are the SAV scheme [76] and a

linear IMEX method [4]:

u−k∆u+ Sk
ε2 u = un − k

ε2

(
u3

n − (S+1)un
)

(3.2.6)

with S > 0, sometimes called a stabilization term. We take S = 2 since that

makes the left hand side a linearization about the far field values, but com-

putational performance is relatively insensitive to S. The SAV scheme is

energy stable with a modified energy. We use the same stabilization coeffi-

cient as above in the SAV scheme. There is a class of linearly implicit energy

stable schemes [16, 54, 55] that require an asymptotically large stabilization

term O(ε−p) with p large and increasing from AC to CH and 2D to 3D for the

analysis. These methods are theoretically interesting but are extremely inac-

curate and not useful for practical applications. We have further discussion

of these schemes in Remark 3.

All time stepping schemes can be applied to CH (3.2.2), with BE and Eyre
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shown below:

u+k∆∆u− k
ε2∆ f (u)= un BE

u+k∆∆u− k
ε2∆u3 = un − k

ε2∆un Eyre

In this case, BE is known to have unique solutions with the energy decay

property when k < ε3 [91] and Eyre is unconditionally energy stable [35].

Second Order Schemes

We also consider the second order methods Trapezoidal Rule (TR), Se-

cant (S) [33], Second Order Backward Differencing (BDF2), and Second Or-

der Singular Diagonal Implicit Runge Kutta (DIRK2) [43] methods. These

are described below for ut =F (u) with

F (u)=∆u− f (u)/ε2 for AC

and F (u)=−ε∆∆u+∆ f (u)/ε for CH

With this notation:

(TR) u− k
2

F (u)= un + k
2

F (un)

(BDF2)
3u
2

−kF (u)= 2un − 1
2

un−1.

Secant is a variant of TR with the term f (u)− f (un) replaced by

(W(u)−W(un))/(u−un)
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where W is the energy term from (3.2.3). It is known to be conditionally

energy stable [33]. For the simple form of W we have taken, the expression

above can be factored explicitly. DIRK2 is a two stage method

u∗−αkF (u∗)= un

u−αkF (u)= un + (1−α)kF (u∗)

with α= 1−1/
p

2. Both DIRK2 and BDF2 are A-stable, and so preferable to

TR and Secant from the perspective of stiff ODE solver theory [43]. A second

order linear IMEX method (SBDF2 [4]) and two variants of second order SAV

methods based on BDF2 are also considered.

There are many other specialized schemes in the literature and we men-

tion two second order unconditionally energy stable concave-convex splitting

schemes here. They are nonlinear two step schemes but the nonlinear prob-

lem at each time step is convex. One is based on TR, with the cubic term han-

dled implicitly and the linear reaction term extrapolated from two previous

time steps [31]. The second is a variant of SBDF2, again with the cubic term

handled implicitly and an additional moderate stabilizing term [92]. Both

schemes have the same asymptotic error behaviour as the Secant, DIRK2,

and SBDF2 methods shown in detail below.

3.2.2 Spatial discretization and solution procedure

The current work concentrates on the time stepping errors, and it is con-

venient to consider the semi-discrete, spatially continuous approximation.

This idealization is approximated well by the Fourier spectral spatial dis-
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cretization. The computational results shown have sufficient spatial resolu-

tion that spatial errors do not affect the results in the digits shown.

We use the Preconditioned Conjugate Gradient (PCG) solvers developed

in [21] for the schemes involving nonlinear implicit problems. We note that

there has been recent promising work in the use of preconditioned steepest

descent with approximate line search in solving these nonlinear problems

[14, 38]. Another approach has been to recast the implicit step as a mini-

mization problem [91]. Both these techniques have the advantage that they

look for local solutions which can be unique and have energy decay even for

large time steps, as shown rigorously in Section 3.6.

The computations in this work are done in a full 2D setting, rather than

in a reduced dimensional radial setting as could be done, in order to give PCG

iteration counts for the nonlinear time stepping methods that have meaning

for more general computations. Note that the PCG counts are independent of

spatial resolution when the problem is resolved.

3.2.3 Error estimation and adaptive time stepping

We perform two time steps of the same size k in order to use a specialized

predictor up for un+2.

up = un + k
3

(F (un)+4F (un+1)+F (un+2)) (3.2.7)
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where F (u)=∆u− f (u)/ε2 for AC and −ε∆∆u+∆ f (u)/ε for CH as above. Time

step sizes are adjusted so that

‖un+2 −up‖∞ ≤σ.

The predictor up is formally one order more accurate than the numerical

approximation un+2 from time stepping, up to fifth order. The predictor has

an inherent dominant local error k5uttttt/90 that is a pure time derivative of

u, which is shown below in Section 3.3.1 to be a desirable property.

For the one step methods, the time step is adjusted adaptively to maintain

a local error below σ as described in [21]. For BDF2 and its linear variants,

time steps are only adjusted by a factor of two. When time steps are reduced

(using Hermite cubic interpolation for the restart value) or increased, four

time steps are taken before checking the local error to allow relaxation of the

initial error layer.

3.3 Local Truncation Errors in Metastable

Dynamics

3.3.1 Metastable dynamics

In our formulation, it is known that after a short time O(ε2) solutions to

AC tend to interfaces between regions of solution near the equilibrium values,

u ≈±1.
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3.3. Local Truncation Errors in Metastable Dynamics

These interfaces have width ε and move approximately with curvature mo-

tion. We refer to this dynamics as metastable or slow, even though with the

particular time scaling we have chosen it occurs in in O(1) time. For the ma-

jority of the time, the solution will be in this regime, so we concentrate now

on the expected and observed behaviour of time stepping in this setting. With

the choice of f (u)= u3 −u, we have

u(x, t)≈ g(z) (3.3.1)

with g(z) := tanh(z/
p

2) and z = dist(x,Γ)/ε, where Γ is the approximate in-

terface with arc length parameter s moving with curvature motion (normal

velocity equal to curvature). We fix its location at the u = 0 level set. The

local coordinates (s, z) are shown in Figure 3.1. This structural result on the

metastable solution can be obtained with formal asymptotics. In the outer

asymptotic region for AC the solution takes the form u = ±1 to all orders.

Curvature motion as the limit ε→ 0 has been proven rigorously [1, 69].

CH has the same metastable solution structure (3.3.1) with normal inter-

face velocity given by Mullins-Sekerka flow, in O(1) time in our scaling (3.2.2).

We refer the reader to the review article [74] for details. It has been shown

that numerical schemes can accurately approximate this limit with implicit

time stepping with appropriate scaling of the time step with ε [39]. We will

show that this limit can be taken with asymptotically larger time steps than

in that analysis.

From (3.3.1), we see that time and space derivatives are large near the
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Figure 3.1: Sketch of the local coordinates of the metastable solution

interface. Starting with

u(x, t)≈ g(dist(x,Γ)/ε)

we can take a time derivative to obtain:

ut ≈ g′(dist(x,Γ))V /ε

where V is the normal velocity at the point on Γ closest to x. Formally taking

higher derivatives in this pattern yields:

∂nu
∂tn =O(ε−n). (3.3.2)

This is used to analyze the truncation error of the time stepping schemes.

Predicted time step sizes for AC

A standard strategy for adaptive time stepping is to have a user specified

local error tolerance of σ. The error for each time step is estimated and the
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time step adjusted so that there is an estimated error in that single time

step less than σ. It is known that the dominant local truncation error for BE

is k2utt/2 which in metastable dynamics is O(k2/ε2) from (3.3.2). The local

truncation error restriction then requires time steps of size

k =O(
p
σε) (BE)

We now proceed to determine the expected behaviour of time steps with ε

and σ from the other schemes. We can write the BE scheme (3.2.4) and Eyre’s

scheme (3.2.5) for AC in an instructive way

u−un −k∆u+k
[
u3 −u

]
/ε2 = 0 (BE)

u−un −k∆u+k
[
u3 −u

]
/ε2 +k(u−un)/ε2 = 0 (Eyre).

Knowing that the truncation error for BE is O(k2/ε2) we see that the trunca-

tion error for the Eyre scheme is dominated by the last term in its expression

above, which has leading order k2ut/ε2 = O(k2/ε3). Our time step prediction

in this case is

k =O(
p
σε3/2) (Eyre)

Thus, the advantage of the Eyre scheme to be able to take large time steps

and remain energy stable is never realized if accurate computational results

are required. Reference [91] has an alternate way to view the loss of accuracy

that does not highlight this asymptotic difference. The first order IMEX and

SAV schemes have the same asymptotic behaviour as Eyre.

Remark 1. It is well known that when large time steps are taken with Eyre’s
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method, the dynamics occur in a slower time scale. This is an exact result for

AC [91], qualitative for CH [22]. In this work, time steps are restricted by a

specified local error tolerance. Thus, we do not see a change in time scale for

the results of Eyre’s method, rather we see decreased time step size.

Remark 2. The formal local error analysis above relies on the stability of

the schemes in metastable dynamics under the resulting time step restric-

tions. More than simple stability, the analysis requires that the time stepping

preserves the asymptotic structure of the diffuse interface. This is the con-

cept we have named profile fidelity. All predicitions described in this section

lead to time stepping that preserves profile fidelity for the classical choice of

f (u)= u3−u. We observe the predicted time step behaviour in ε and σ compu-

tationally. In Section 3.6.2 we show that for (most) other reaction terms, Eyre

time stepping loses profile fidelity for time steps k =O(ε3/2) and in these cases,

k =O(ε2) is needed for accuracy.

Remark 3. The first order, linearly implicit energy stable scheme for 2D AC is

analyzed in [16]. The analysis requires a stabilization term of order ε−2| lnε|.
If such a scheme were implemented, the time steps required for a local error

tolerance of σ would be k = O(
p
σε5/2/| lnε|), prohibitively small for practical

computation.

We can determine the dominant term in the local truncation errors of the
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3.3. Local Truncation Errors in Metastable Dynamics

second order schemes applied to AC:

(TR) k3uttt/12=O(k3/ε3)

(S) k3 (
uttt/12+uu2

t /(2ε2)
)=O(k3/ε4)

(DIRK2) k3 (
(α2(1−α)+α/2−1/6)uttt −3α2(1−α)uu2

t /(2ε2)
)=O(k3/ε4)

(BDF2) −k3uttt/3=O(k3/ε3)

(SBDF2) k3 (
3u2 + (M+1)

)
utt/ε2 =O(k3/ε4)

We consider two second order SAV variants based on how an extrapolated

approximation is computed. If the extrapolated value of un+1 is taken as

2un −un−1 the scheme (referred to as SAV2-A) behaves similarly to SBDF2.

If the extrapolated value is computed with a first order linear IMEX scheme

as suggested in [76] (referred to as SAV2-B), the scheme has a local truncation

error of order k3/ε5. The results are summarized in Table 3.1. It is clear that

BE takes asymptotically (as ε→ 0) fewer time steps than Eyre, although they

are both first order in time step size. TR and BDF2 take asymptotically fewer

time steps than Secant, DIRK2, SBDF2, SAV2-A and SAV2-B although they

are all second order methods. The computations in Section 3.4 below show

that these time step estimates correspond to real computational behaviour.

Remark 4. We predict the number M of time steps in Tables 3.1 and 3.2 and

how it varies with ε and σ. As shown in Figure 3.2 we are also predicting how

a profile of time steps k(t) behaves with ε and σ.
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3.3. Local Truncation Errors in Metastable Dynamics

Method (AC) L k M =O(1/k)
BE k2/ε2 p

σε 1/(
p
σε)

Eyre, IMEX1, SAV1 k2/ε3 p
σε3/2 1/(

p
σε3/2)

TR, BDF2 k3/ε3 3
p
σε 1/( 3

p
σε)

S, DIRK2, SBDF2, SAV2-A k3/ε4 3
p
σε4/3 1/( 3

p
σε4/3)

SAV2-B k3/ε5 3
p
σε5/3 1/( 3

p
σε5/3)

Table 3.1: Order predictions for the behaviour of the numerical schemes with
local error tolerance σ in the metastable regime of AC dynamics. Here, L is
the local error, k is the time step size, and M is the number of time steps to
reach a fixed end time.

Predicted time step sizes for CH

The same local truncation analysis can be done for the CH in the metastable

regime where the solution has the same interface structure (3.3.1) with the

interface Γ moving approximately with Mullins-Sekerka flow in O(1) time.

BE, TR, BDF2, and SBDF2 have the same error expressions as above, but

Eyre, Secant and DIRK2 have local truncation errors when applied to CH

listed below:

(Eyre) k2(utt/2−∆ut/ε)=O(k2/ε4)

(S) k3 (
uttt/12−∆(uu2

t )/(2ε)
)=O(k3/ε5)

(DIRK2) k3 (
(α2(1−α)+α/2−1/6)uttt +3α2(1−α)∆(uu2

t )/(2ε)
)=O(k3/ε5)

(SBDF2) k3 (
3u2 + (M+1)

)
∆utt/ε=O(k3/ε5)

where we have used the fact that the Laplacian ∆ increases the size of terms

by 1/ε2 near the interface. The first order IMEX and SAV schemes have the

same asymptotic behaviour as Eyre. SAV2-A behaves similarly to SBDF2 as

before, with SAV2-B worse by a power of ε as for the AC case above. The re-
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3.3. Local Truncation Errors in Metastable Dynamics

Method (CH) L k M =O(1/k)
BE k2/ε2 p

σε 1/(
p
σε)

Eyre, IMEX1, SAV1 k2/ε4 p
σε2 1/(

p
σε2)

TR, BDF2 k3/ε3 3
p
σε 1/( 3

p
σε)

S, DIRK2, SBDF2, SAV2-A k3/ε5 3
p
σε5/3 1/( 3

p
σε5/3)

Table 3.2: Order predictions for the behaviour of the numerical schemes with
local error tolerance σ in the metastable regime of CH dynamics. Here, L is
the local error, k is the time step size, and M is the number of time steps to
reach a fixed end time.

sults are summarized in Table 3.2. The predictions in this table are validated

in the numerical experiments in the next section. Although the methods all

have the formal order of accuracy in terms of time step size, the behaviour as

ε→ 0 varies significantly. Note that the gap between BE and the other first

order schemes, and between TR/BDF2 and Secant/DIRK2/SBDF2/SAV2-A is

wider for CH dynamics than it was for AC.

Discussion: the source of increased local error

In the metastable regime, the two terms in AC and CH (diffusion and

nonlinear reaction) are both large but approximately cancel to give the slow

dynamics. The methods with asymptotically (as ε→ 0) small local errors (BE,

TR, BDF2) have dominant truncation errors that are pure time derivatives of

the solution, which inherit this high order cancellation. The other methods

which have large local errors have truncation errors that involve the reaction

term individually. This imbalance amplifies the size of the error. As an ex-

ample, DIRK2 applied to ut =F (u) has an error proportional to F ′′u2
t . From

this discussion, we believe the ranking of the schemes in this work will also

apply to other nonlinear problems with metastable dynamics.
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3.4. Computational Results

3.4 Computational Results

3.4.1 Allen-Cahn

We take initial conditions in the form of a radial front

tanh

√
(x−π)2 + (y−π)2 −2

ε
p

2

and compute with ε = 0.2, 0.1, 0,05 and 0.025. The benchmark for accuracy

is the time T at which the value at the domain centre (π,π) changes from

negative to positive. Except for the exponentially small (in ε) derivative dis-

continuities at the periodic boundaries, the dynamics approximate the sharp

interface limit of curvature motion of a circle shrinking to a point at the do-

main centre. The expectation from asymptotic analysis of the sharp interface

limit is that

T = 2+O(ε2).

This is confirmed by the numerical solutions below. A video of the dynamics

is available [88].

First order methods

The PCG approach is known to have bounded condition number under

the scaling k = Cε2 for BE with C < 1 [91] and we observe good behaviour in

the example below even with C > 1 in the metastable regime. It is observed

computationally in this work that the PCG for Eyre’s method is independent

of k and ε although the authors are not aware of a proof in the literature.

PCG counts can be used as a proxy for computational time when comparing
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3.4. Computational Results

BE Eyre
σ M CG E M CG E

1e-4 717 5,348 [7.46] 0.003 2,350 14,856 [6.32] 0.047
1e-5 2,225 (3.10) 9,448 [4.24] 0.001 7,351 (3.12) 28,263 [3.85] 0.014
1e-6 7,010 (3.15) 23,017 [3.28] 0.001 23,172 (3.15) 68,148 [2.94] 0.004

Table 3.3: Computational results for the AC benchmark problem with fixed
ε = 0.2 and local error tolerance σ varied. BE results are on the left, Eyre
on the right. Here, M is the total number of time steps taken (with the ratio
to the value above in brackets), CG is the number of conjugate iterations
(with the ratio to the number of time steps in brackets), E is the error in the
benchmark time.

BE Eyre
ε M CG E M CG E

0.2 717 5,348 [7.46] 0.003 2,350 14,856 [6.32] 0.047
0.1 1,291 (1.80) 12,354 [9.57] 0.001 6,463 (2.75) 44,717 [6.92] 0.069

0.05 2,412 (1.87) 27,782 [11.52] 0.001 18,218 (2.83) 143,416 [7.87] 0.099
0.025 4,630 (1.92) 64,884 [14.01] ∗ 52,595 (2.89) 497,846 [9.47] 0.141

Table 3.4: Computational results for the AC benchmark problem with fixed
local error tolerance σ = 10−4 and ε varied. Here, M is the total number of
time steps taken (with the ratio to the value above in brackets) and CG is the
number of preconditioned conjugate gradient iterations (with the ratio to the
number of time steps in brackets), E is the error in the benchmark time with
∗ denoting a result correct to three decimal places.

methods.

Results of the numerical experiments in which σ and ε were varied for

BE and Eyre are shown in Tables 3.3 and 3.4. Spatial errors do not affect the

digits shown in any of the computational results in this chapter.

Table 3.3 validates the second order O(k2) local truncation error since

the number of time steps was predicted to be M = O(1/
p
σ) for both methods

with ε constant, noting that
p

10 ≈ 3.16. Such results for other schemes and

for the CH benchmark problem below are not shown, but verify the formal
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3.4. Computational Results

Figure 3.2: Time steps k for Allen-Cahn dynamics with ε and σ varied using
BE (left) and DIRK2 (right). The time steps decrease in size as the simulation
approaches the topological singularity at t ≈ 2. Note that for each method, the
profiles k(t) have the same shape as σ and ε are varied and scale with these
quantities according to our theoretical predictions. In particular, note that
time steps decrease more quickly for BE as σ is decreased but more quickly
for DIRK2 as ε is decreased, as we predict.

accuracy of the schemes. Table 3.4 validates the prediction of M = O(1/ε)

for BE and M = O(1/ε3/2) for Eyre with σ constant, noting that 23/2 ≈ 2.83.

Both tables validate the prediction that for the same local tolerance σ, Eyre

involves more computational work than BE and gives less accurate answers.

CG counts for both methods are small as expected. You see (unexpectedly)

that the final accuracy of BE does not seem to degrade as ε → 0 for fixed

σ. This is discussed in Section 3.5 below. Although BE does not guarantee

energy stability, no step accepted by the local error tolerance exhibited an

energy increase.

For completeness, we show the time step sizes as a function of time for BE

in Figure 3.2 with ε and σ varied. As mentioned in Remark 4 our predictions

for the behaviour of the time steps sizes k as ε and σ are varied describe a

profile k(t).
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3.4. Computational Results

IMEX1 SAV1
ε M E M E

0.2 3,932 0.067 3,936 0.067
0.1 11,110 (2.83) 0.096 11,112 (2.82) 0.096
0.05 31,676 (2.85) 0.138 31,682 (2.85) 0.138

0.025 90,748 (2.86) 0.198 90,760 (2.86) 0.198

Table 3.5: Computational results for the AC benchmark problem with fixed
local error tolerance σ = 10−4 and ε varied. Here, M is the total number of
time steps taken (with the ratio to the value above in brackets) and E is the
error in the benchmark time.

We repeat the ε→ 0 study for IMEX1 and SAV1 in Table 3.5. These meth-

ods require a fixed number of FFT calculations per time step to invert the con-

stant coefficient linear implicit aspect of the schemes, with SAV1 requiring

four times as many solves as IMEX1. It is seen that IMEX1 behaves almost

identically to SAV1 and both are superior to Eyre’s method when computa-

tional cost is considered. In the context of this study, there is no benefit from

the theoretical guarantees of energy stable schemes and BE is the optimal

(with our asymptotic definition) first order scheme with IMEX1 the runner

up. This will remain true for other nonlinear solver strategies for BE as long

as they require fewer than O(1/
p
ε) iterations when adaptive time steps are

taken.

Remark 5. Note that for the BE computation for ε = 0.025 we can still get

reasonable accuracy taking σ = 10−2. In this case, the maximum value of

k/ε2 is 14.6. Clearly, the theory which guarantees existence of solutions and

energy decay for k < ε2 [91] can be improved for metastable dynamics. This is

explored in the analysis in Sections 3.5 and 3.6 below.
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3.4. Computational Results

Second Order Methods

The CG counts of all the nonlinear second order methods are relatively

insensitive to ε, similar to the first order methods shown above. We show the

number of time steps used for the seven methods in Table 3.6, for σ = 10−4

fixed and ε varied. All second order methods give at least three digits of ac-

curacy to the benchmark time with this tolerance σ. The superiority of TR

and BDF2 is clearly seen with M = O(1/ε), compared to M = O(1/ε4/3) (noting

that 24/3 ≈ 2.52) for Secant, DIRK2, SBDF2, SAV2-A and M = O(1/ε5/3) (not-

ing that 25/3 ≈ 3.18) for SAV-B as predicted above. The pattern in the number

of time steps for the multi-step methods is a bit rougher due to the strict

criteria we have used for adaptive time step change. As above, we see no ben-

efit from the theoretical guarantees of energy stable schemes. Fully implicit

methods TR and BDF2 are asymptotically optimal in terms of the number of

time steps and are computationally optimal if the solvers require fewer than

O(1/ 3
p
ε) iterations when adaptive time steps are taken (which appears to be

the case with the Newton PCG solver we used). SBDF2 is the runner up and

notably it is comparable to the fully implicit DIRK2 method but does not have

the overhead of a nonlinear solve.

It is interesting to note that the slight change in the extrapolation proce-

dure in the SAV2 schemes makes such a difference to their asymptotic perfor-

mance. It is confirmation that merely considering the order of time stepping

scheme and its theoretical energy stability properties is not the whole story.
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3.4. Computational Results

ε TR S BDF2 DIRK2 SBDF2 SAV2-A SAV2-B
0.2 170 236 280 180 588 768 1,572
0.1 278 (1.64) 512 (2.16) 472 (1.69) 364 (2.02) 1,384 (2.35) 1,572 (2.04) 5,436 (3.46)
0.05 492 (1.77) 1,208 (2.36) 860 (1.82) 814 (2.24) 3,260 (2.35) 3,392 (2.16) 15,088 (2.78)
0.025 916 (1.86) 2,960 (2.45) 1,632 (1.90) 1,894 (2.33) 7,600 (2.33) 7,980 (2.35) 48,048 (3.18)

Table 3.6: Computational results for the second order methods applied to
the AC benchmark problem with fixed local error tolerance σ = 10−4 and ε

varied. Shown are the total number of time steps taken (with the ratio to the
value above in brackets)

3.4.2 Cahn-Hilliard

For the initial conditions we take

tanh
(

r−5/2

ε
p

2

)
+ tanh

(
3/2− r
ε
p

2

)
+1

with r =
√

(x−π)2 + (y−π)2 and compute with ε = 0.2, 0.1, 0,05 and 0.025.

The dynamics approximate the sharp interface limit of two concentric circles,

with the inner circle shrinking. As before, the benchmark is the time T at

which the value at the domain centre (π,π) changes from negative to positive.

A video of the dynamics is available [89] .

First order methods

Results of the numerical experiments in which ε is varied for the first or-

der methods are shown in Table 3.7. These validate the prediction of M =
O(1/ε) for BE and M = O(1/ε2) for Eyre and IMEX1 with σ constant. As for

the AC case, SAV1 behaves similarly to IMEX1 at increased computational

cost. For CH, the implicit problem for BE is more difficult to solve as ε→ 0

with fixed σ, but it is still more accurate than Eyre stepping for equivalent
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BE Eyre IMEX1
ε M CG E M CG E M E

0.2 730 5,348 [7.33] ∗ 3,055 36,684 [12.0] 0.019 9,982 0.014
0.1 1,184 (1.62) 24,778 [20.9] 0.001 12,751 (4.17) 190,204 [14.0] 0.021 43,332 (0.015) 0.015
0.05 2,068 (1.75) 66,307 [32.1] ∗ 52,753 (4.13) 937,774 [17.8] 0.022 181,234 (4.18) 0.015

0.025 3,768 (1.82) 198,771 [52.8] ∗ 215,443 (4.08) 4,504,278 [20.9] 0.022 740,366 (4.09) 0.015

Table 3.7: Computational results for the first order methods applied to the
CH benchmark problem with fixed local error tolerance σ= 10−4 and ε varied.
Here, M is the total number of time steps taken (with the ratio to the value
above in brackets), CG is the number of conjugate iterations (with the ratio
to the number of time steps in brackets), and E is the error in the benchmark
time with ∗ denoting a result correct to three decimal places.

computational cost. It will be asymptotically more efficient as long as the

solution strategy for the nonlinear problem requires fewer than O(1/ε) itera-

tions with adaptive time stepping. As with AC, we see that BE does not suffer

from global accuracy decrease as ε→ 0.

Second order methods

The CG counts for the second order methods behave like those of BE with

ε as shown above. We show the number of time steps used for the four meth-

ods in Table 3.8, for σ = 10−4 fixed and ε varied. The superiority of TR and

BDF2 is clearly seen, consistent with M = O(1/ε) , compared to M = O(1/ε5/3)

(noting that 25/3 ≈ 3.17) for Secant, DIRK2, and SBDF2 as predicted above.

Results for SAV2-A are comparable to those for SBDF2. Again, the implica-

tions for the asymptotic computational superiority of fully implicit TR and

BDF2 under the assumption of sufficient solver efficiency are clear.
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ε TR S BDF2 DIRK2 SBDF2
0.2 230 534 320 378 1,388
0.1 314 (1.36) 1,530 (2.87) 468 (1.46) 788 (2.08) 4,108 (2.96)
0.05 474 (1.51) 4,722 (3.08) 748 (1.60) 1,906 (2.42) 12,352 (3.01)

0.025 792 (1.67) 14,924 (3.16) 1,312 (1.75) 6,048 (3.17) 44,060 (3.57)

Table 3.8: Computational results for the second order methods applied to
the CH benchmark problem with fixed local error tolerance σ = 10−4 and ε

varied. Shown are the total number of time steps taken (with the ratio to the
value above in brackets)

3.5 Asymptotic Analysis of Properties of BE AC

Solutions

The results in Table 3.4 present the accuracy for BE applied to AC with

fixed local error tolerance σ = 10−4 under various values of ε. It is remark-

able the accuracy in the benchmark time does not degrade as ε→ 0. This is

unexpected, as a naïve prediction would be that the final accuracy scaled like

Mσ = O(
p
σ/ε) where M is the number of time steps. It is clear that the re-

sulting solution accuracy for the schemes under specified local error tolerance

is a nontrivial question.

We present below the asymptotic analysis of a fully implicit BE time step

(3.2.4) in two dimensions assuming the solution is in the meta-stable regime.

That is, un is approximately described as a curve xn(s) parametrized by arc

length with normal n̂, dressed with the heteroclinic profile (3.3.1). We take

the scaling k = cε with c independent of ε, both sufficiently small depending

only on the curve xn. We consider the formal asymptotics for the implicit

time step u of (3.2.4) in this setting, anticipating that u will have the same
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3.5. Asymptotic Analysis of Properties of BE AC Solutions

local dependence u(s, z). Using

∆≈ 1
ε2

∂2

∂z2 + κ

ε

∂

∂z

where κ is the curvature of the interface, we find at leading order O(ε−1) that

u has the same homoclinic structure around a new curve x(s). That is,

un+1 ≈ g(z)+εv(z, s) (3.5.1)

with g(z)= tanh(z/
p

2) and where we have changed coordinates to (s, z) with

(x, y)= x(s)+εzn̂

based on the curve x(s) after the implicit time step. In the language of Re-

mark 2 we predict that the scheme preserves profile fidelity and show below

that this is asymptotically consistent. In (3.5.1), v(z, s) is the correction to the

leading order solution. We will identify the size and structure of this term

below.

We take

xn = x−kρ(s)n̂ (3.5.2)

where ρ is the average normal speed through the time step. Recalling that

k = cε and the spatial scaling of z, we have

un ≈ g(z− cρ(s)). (3.5.3)

A diagram is shown in Figure 3.3. Note that the variation in normal direction
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3.5. Asymptotic Analysis of Properties of BE AC Solutions

Figure 3.3: Sketch of the asymptotic analysis of the fully implicit problem.
Here, ρ(s) the average normal speed of the interface between time steps.

appears in higher order asymptotic terms, so it is consistent in what follows

to use the same n̂ as normal direction for both curves, i.e. the same “z".

Considering now the next order term O(1) in (3.2.4) with the forms (3.5.1)

and (3.5.3):

g′cρ+ 1
2

g′′c2ρ2 + 1
6

g′′′c3ρ3 ≈ cκg′− cL v (3.5.4)

where L := ∂2/∂z2 + f ′(g)· and we have used the smallness of c for the cubic

Taylor approximation of g(z)− gn(z) on the right hand side. We consider

(3.5.4) at each s in the L2(R) orthogonal decomposition of G := span{g′(z)} and

G⊥. Note that g′′ ∈ G⊥ (this does not depend on the specific reaction term

f = u3 −u chosen here) and L has G as its kernel and has bounded inverse

on G⊥ from standard Fredholm theory [52]. Thus we have ρ = κ+O(c2) and

v =O(c) in G⊥. Careful examination of these results shows that the errors in

G⊥ do not accumulate and are globally of size O(cε) = O(k) and so decrease

as ε→ 0. Global errors in interface position after O(1/k) time steps are of size
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3.5. Asymptotic Analysis of Properties of BE AC Solutions

c2, independent of ε. Global solution value errors due to the position error

have size O(c2/ε) = O(k2/ε3) and so it is seen that BE behaves like a second

order method in this scaling. This explains the unexpected accuracy in AC

BE computations as ε→ 0.

Remark 6. Note that the error estimator (3.2.7) uses F (u) which sees the

undamped dominant truncation error term, which is why the number of time

steps behaves with ε in the manner predicted in Section 3.3.1. Thus for BE

applied to AC in the metastable regime, the estimator asymptotically over-

estimates the local errors actually made.

The formal asymptotic results can also be used to show that the implicit

time steps in this scaling lead to energy decrease. Neglecting the O(c2) terms

in the interface motion, we have from (3.5.2)

xn = x−kκn̂.

Using the identities for arc length parametrized curves |xs| = 1, κn̂ = xss and

xs ·xsss =−κ2 it follows by taking the s derivative of the equation above and

the dot product with xs at each s that

|xn,s| ≥ 1+kκ2 ≥ 1= |xs|.

This shows that the metastable curve at time n is longer than at the next step

n+1. Since the energy E is proportional to curve length to highest order in the

metastable regime [64], we have shown formally that implicit time stepping

for AC has the energy decay property under this time step scaling. Large,

45



3.6. Rigorous Radial Analysis of AC With BE and Eyre Time Stepping

accurate, fully implicit time steps can be taken in computations validated in

Section 3.4.

In the next section we show a closely related rigorous result in a radial

geometry. The main result is in Proposition 3.6.1. A key ingredient is an

identification of a dominant term in the space G that represents the inter-

face motion, separate from heavily damped terms in the perpendicular space,

as shown here. Care must be taken to control the size of terms which are

formally neglected in this asymptotic analysis.

3.6 Rigorous Radial Analysis of AC With BE and

Eyre Time Stepping

We derive rigorous asymptotic evolution of a radially symmetric profile

for BE and first order Eyre-type methods for the Allen-Cahn equation in R2.

Extensions to radial profiles in Rd is immediate. More precisely we consider

a splitting f = f+− f− and study the iterative scheme

u−un

k
= urr + 1

r
ur − 1

ε2 ( f+(u)− f−(un)) , r ∈ [0,∞)

ur(0)= 0,u(∞)= 1.

For simplicity, we assume that f is smooth, odd about u = 0, has precisely

three simple zeros at u =±1 and at u = 0, and tends to ±∞ as u →±∞. This

includes the classical choice of f (u) = u3 − u but we consider other reaction

terms in this class since Eyre’s method can have quite different behaviour as

shown in Section 3.6.2. The BE scheme corresponds to the choice f− ≡ 0 while
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3.6. Rigorous Radial Analysis of AC With BE and Eyre Time Stepping

Eyre-type schemes take f ′+, f ′− ≥ 0. We pose the problem on the affine space

Y := {u+1 ∈ H1
R(0,∞)

∣∣∂ru(0)= 0.},

with un ∈ Y as a given. The assumptions on f imply that the continuous 1D

Allen-Cahn equation has a steady state solution

gzz = f (u), (3.6.1)

which is heteroclinic to ±1; that is g →±1 as z →±∞. Considering R > 1, we

modify this g at the order O(e−1/ε) so that g′ = 0 on (−∞,−1/ε) for ε¿ 1. This

introduces exponentially small residuals in the sequel that have no impact

upon the salient results of our analysis.

We introduce z = r−R
ε

, the weighted inner product

〈u,v〉R :=
∫ ∞

−R/ε
u(z)v(z) (R+εz)dz,

and the associated spaces L2
R and H1

R with BH1
R
(δ) the ball that is centered at

the origin with radius δ in the space H1
R . We rewrite the iterative equation

as
u−un

k
= ε−2 (uzz − ( f+(u)− f−(un)))+ ε−1uz

R+εz , (3.6.2)

on the domain z ∈ (−R/ε,∞). We decompose un and u as

un = g
(
z+ R−Rn

ε

)
+vn,

u = g(z)+v,
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3.6. Rigorous Radial Analysis of AC With BE and Eyre Time Stepping

where Rn and vn are taken as given and R and v are to be determined. The

profile associated to un is denoted gn and observe that it admits the expan-

sion

gn = g
(
z+ R−Rn

ε

)
= g+ g′ R−Rn

ε
+O

((
R−Rn

ε

)2)
.

In the sequel we will enforce the orthogonality conditions

〈v, g′〉R = 0, 〈vn, g′
n〉R = 0, (3.6.3)

and denote the corresponding subspaces of L2
R by X⊥ and X⊥

n respectively

with the associated orthogonal projections Π and Πn.

At this point the analysis of the implicit and Eyre-type schemes diverges

sufficiently that we approach them distinctly.

3.6.1 Backward Euler estimates

For BE we take f ′− ≡ 0, f = f+, and write the iterative map as

v+ k
ε2 Lv = vn − (g− gn)+ kg′

ε(R+εz)
− k
ε2 N , (3.6.4)

where we have introduced the linear operator

L :=−
(
∂2

z +
ε

R+εz∂z

)
+ f ′(g)=− 1

R+εz∂z ((R+εz)∂z)+ f ′(g), (3.6.5)

and the nonlinearity

N (v) := f (g+v)− ( f (g)+ f ′(g)v).
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The operator L is self-adjoint in the weighted inner product for which the

eigenvalue problem takes the form

Lψ= λ

R+εzψ,

subject to ∂zψ(−R/ε)= 0 and ψ→ 0 as z →∞. Since the profile g solves (3.6.1),

it will be useful to compare L to the simpler operator

L0 :=−∂2
z + f ′(g), (3.6.6)

arising as the linearization of (3.6.1) about g in L2(R). The operator L0 is self-

adjoint on L2(R), and since g is heteroclinic with g′ > 0, the Sturm-Liouville

theory on L2(R) implies that L0 has a simple, ground-state eigenvalue at λ= 0

with eigenfunction g′ and the remainder of the spectrum of L0 is strictly posi-

tive, in particular L0 is uniformly coercive on the space {g′}⊥L2(R). While L does

not generically have a kernel, it does have an eigenspace with a small associ-

ated eigenvalue. However, for ε sufficiently small, it inherits the coercivity of

L0.

Lemma 1. Fix ε0 > 0 sufficiently small, then there exists α > 0, independent

of R ≥ 1 and of ε ∈ (0,ε0), such that

〈Lv,v〉R ≥α‖v‖2
H1

R
. (3.6.7)

for all v ∈ H1
R satisfying 〈v, g′〉R = 0.

Proof. We defer the proof of L2
R coercivity to Section 3.7. To extend coercivity
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to H1
R we observe that

〈Lv,v〉R =
∫ ∞

−R/ε
(R+εz)

(|v′|2 + f ′(g)|v|2)
dz,

so that for any t ∈ (0,1) we may write

〈Lv,v〉R = t〈Lv,v〉R + (1− t)〈Lv,v〉R ,

≥
∫ ∞

−R/ε
(R+εz)(t|v′|2 + ((1− t)α− t‖ f ′(g)‖∞)|v|2)dz,

≥ α̃‖v‖2
H1

R
,

where we have introduced α̃ :=α/(1+α+‖ f ′(g)‖∞)> 0. Dropping the tilde, we

have (3.6.7) with α independent of ε> 0 and R > 1.

We assume throughout our analysis that ‖v‖H1
R

and ‖vn‖H1
R

are uniformly

bounded by δ¿ 1. Returning to (3.6.4), we denote its right-hand side as FBE.

To have the inversion of the operator on the left-hand side be contractive the

term FBE must be approximately orthogonal to the small eigenspace of L. As

Lemma 1 shows it is sufficient to be LR-orthogonal to g′, the kernel of L0. To

this end we determine R = R̂BE(v,vn,Rn) such that FBE ∈ X⊥, or equivalently

〈FBE, g′〉R = 0. (3.6.8)

Assuming this condition has been enforced we introduce

M := I + k
ε2 L,
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and may rewrite the BE iteration in the equivalent formulation

v =GBE(v,vn,R−Rn) := M−1ΠFBE(v,vn,R−Rn). (3.6.9)

The key step is the introduction of the operator Π, the orthogonal projection

onto X⊥. This is redundant when FBE ∈ X⊥, but preserves contractivity for

choices of (v,vn,R−Rn) when it is not. Our goal is to show the function GBE is

a contraction mapping and to develop asymptotic formula for R and v.

Lemma 2. The function R = R̂BE satisfies the implicit relation

R−Rn

k
=− 1

R
+ k

4R3 − b1k2

ε2R3 +O
(
δ,

k3

ε2 ,
δ2

ε

)
. (3.6.10)

where

b1 := ‖g′′‖2
R

6‖g′‖2
R
> 0. (3.6.11)

Moreover we have the Lipshitz estimate

|R̂BE(v;vn,Rn)− R̂BE(ṽ;vn,Rn)| ≤ c
kδ
ε
‖v− ṽ‖R , (3.6.12)

so long as kδ2 ¿ ε2.

Proof. Due to parity considerations, we remark that ‖g′‖2
R = R‖g′‖2

L2(R), up to

exponentially small terms. For brevity, and as an element of foreshadowing,

we approximate (R−Rn) by k in the O-error terms. We address the terms in
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FBE and derive the following elementary estimates,

〈vn, g′〉R = 〈vn, (g′− g′
n)〉R =−〈vn, g′′〉R

R−Rn

ε
+O

(
δ

k2

ε2

)
, (3.6.13)

〈g− gn, g′〉R =−‖g′‖2
R

(
(R−Rn)

ε
− (R−Rn)2

4Rε

)
+

+ ‖g′′‖2
R

6
(R−Rn)3

ε3 +O
(

k4

ε3

)
, (3.6.14)〈

g′

R+εz , g′
〉

R
= ‖g′‖2

L2(R) =
‖g′‖2

R

R
, (3.6.15)

|〈N , g′〉R | ≤ cδ2. (3.6.16)

For this scheme, FBE depends upon v only through N . Collecting terms in

the orthogonality condition that are linear in R−Rn and identifying relevant

higher order terms yields the relation

R−Rn

k
=− 1

R
+ (R−Rn)2

4Rk
+ b1(R−Rn)3

kε2 +O
(
δ,

k3

ε2 ,
δ2

ε

)
(3.6.17)

where b1 is given in (3.6.11). Under the assumptions on k and δ we have the

leading order result R −Rn = −k/R. Substituting this relation into (3.6.17)

yields the result (3.6.10).

To obtain the Lipschitz estimate we observe from the estimates above that

|R̂BE(v)− R̂BE(ṽ)| ≤ c
k

ε‖g′‖2
R

∣∣〈N (v), g′〉R −〈N (ṽ), g̃′〉R
∣∣ .

The nonlinearity satisfies the Lipschitz properties

‖N (v)−N (ṽ)‖R ≤ cδ‖v− ṽ‖R ,
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while

‖g′− g̃′‖R ≤ c
|R̂BE(v)− R̂BE(ṽ)|

ε
.

Adding and subtracting 〈N (ṽ), g′〉R and using (3.6.16), we arrive at the esti-

mates

|R̂BE(v)− R̂BE(ṽ)| ≤ c
(

kδ
ε
‖v− ṽ‖R + kδ2

ε2 |R̂BE(v)− R̂BE(ṽ)|
)
.

Imposing the condition kδ2 ¿ ε2 yields (3.6.12).

To establish bounds on the map GBE defined in (3.6.9) we apply M to both

sides of the relation and take the L2
R inner product with respect to GBE. Using

the coercivity estimate (3.6.7) we find

‖GBE‖2
R +α k

ε2 ‖GBE‖2
H1

R
≤ ‖ΠFBE‖R‖GBE‖R .

Taking v,vn ∈ BH1
R
(δ) for δ¿ 1 and recalling that the projection Π crucially

cancels the leading order term in g− gn, we estimate

‖GBE‖R +α k
ε2 ‖GBE‖H1

R
≤ c

(
δ+ k2

ε2 +k+ k
ε2δ

2
)
. (3.6.18)

For the BE system we examine distinguished limits k = εs, for s ∈ (1,2),

which we call the large time-step regime, for which the H1
R term is dominant

on the left-hand side of (3.6.18). We drop the L2
R term to find,

‖GBE‖H1
R
≤ c

(
δε2−s +εs +δ2)

.
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Taking δ= εs′ for any s′ >max{s/2,2(s−1)} then we determine that

‖GBE‖H1
R
≤ c(ε2−s+s′ +εs +ε2s′)≤ δ,

for ε sufficiently small. In particular, since s > max{s/2,2(s−1)} in the large

time-stepping regime, we may take δ= k = εs, so that, viewing GBE as a map

on (v,vn), we have GBE : BH1
R
(k)×BH1

R
(k) 7→ BH1

R
(k), for all s in the large time-

step regime.

Proposition 3.6.1. Fix 1 < s < 2, then in the distinguished limit k = εs the

function GBE defined in (3.6.9) with R := Rn+1 = R̂BE(v;vn,Rn) maps BH1
R
(k)×

BH1
R
(k) into BH1

R
(k) and is a strict contraction. In particular it has a unique

solution v ∈ BH1
R
(k), denoted by vn+1 which satisfies

∥∥∥∥vn+1 − k
R2 LΠg′′

∥∥∥∥
H1

R

≤ c
ε2

k
‖vn‖R +O(k2).

In particular there exists c > 0 such that for all v0 ∈ BH1
R
(ck) and R0 > 1 the

sequence {(vn,Rn)}N
n=1 satisfies vn ∈ BH1

R
(ck) while {Rn}N

n=0 satisfies the back-

wards Euler iteration

Rn+1 −Rn

k
=− 1

R
− b1k2

ε2R3 +O(k), (3.6.19)

where b1 > 0 is given by (3.6.11). Here N is the iteration number such that

RN > 1 and RN+1 < 1.

Proof. We have established the mapping property. To establish the contrac-

tivity we must control the impact of f upon the projection Π through the
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motion of the front R. We assume that v, ṽ,vn ∈ BH1
R
(k) and denote R = R(v)

and R̃ = R(ṽ), with the associated front profiles denoted by g and g̃. The esti-

mate (3.6.12) establishes that R̂BE is Lipschitz with constant ckδ/ε, which in

the the large time-step regime reduces to ck2/ε. Following the proof of (3.6.12)

we find that

‖FBE(v)−FBE(ṽ)‖H1
R
≤ c

k2

ε2 ‖v− ṽ‖H1
R
. (3.6.20)

In the large time-step regime, using (3.6.7) we deduce the bound

‖M−1Π f ‖H1
R
≤α−1 ε

2

k
‖ f ‖R (3.6.21)

We wish to obtain a bound on the difference of GBE at two values of v:

GBE(v,vn)−GBE(ṽ,vn)= M−1ΠFBE − M̃−1Π̃F̃BE.

We first bound the difference

gBE := (M−1Π− M̃−1Π̃)FBE. (3.6.22)

The analysis is complicated by the fact that M is only uniformly invertible on

the range of Π. To factor these projected inverses we act with M, observing

MgBE = (Π−MM̃−1Π̃)FBE = (ΠM̃−M)M̃−1Π̃FBE +Π(I − Π̃)FBE, (3.6.23)

where we used that fact that M̃M̃−1Π̃ = Π̃ and hence M̃M̃−1Π̃+ (I − Π̃) = I.

Since the right-hand side of (3.6.23) lies in the range of Π we may invert
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boundedly,

ΠgBE = M−1Π(M̃−M)M̃−1Π̃FBE +M−1Π(I − Π̃)FBE. (3.6.24)

To recover the whole gBE we act with (I −Π) on (3.6.22) obtaining

(I −Π)gBE =−(I −Π)M̃−1Π̃FBE =−(Π̃−Π)M̃−1Π̃FBE. (3.6.25)

Adding (3.6.25) to (3.6.24) yields a regularized expression that accounts for

the shifts in the projections

gBE = M−1Π(M̃−M)M̃−1Π̃FBE +M−1Π(Π− Π̃)FBE + (Π− Π̃)M̃−1Π̃FBE.

(3.6.26)

The operators M−1Π and M̃−1Π̃ are bounded using (3.6.21), while

‖M̃−M‖R∗ = k
ε
‖ f ′(g)− f ′( g̃)‖R∗ ≤ c‖g− g̃‖R∗,

≤ c
|R− R̃|

ε
≤ c

k2

ε2 ‖v− ṽ‖H1
R
,

where ‖ · ‖R∗ denotes the operator norm from L2
R into itself. The projections

satisfy

‖(Π− Π̃) f ‖R = ‖g′〈g′, f 〉R − g̃′〈 g̃′, f 〉‖R ,

≤ c
k2

ε2 ‖v− ṽ‖H1
R
‖ f ‖R + c

ε2

k
k2

ε2 ‖v− ṽ‖H1
R

Applying these estimates to (3.6.26) and using (3.6.18) to estimate ΠFBE we
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obtain

‖gBE‖H1
R
≤c

(
ε4

k2
k2

ε2 + ε2

k
k2

ε2

)
‖v− ṽ‖H1

R
‖ΠFBE‖L2 ,

≤ c
(
ε2 +k

) k2

ε2 ‖v− ṽ‖H1
R
. (3.6.27)

Finally we write

GBE(v,vn)−GBE(ṽ,vn)= gBE + M̃−1Π̃(FBE −F̃BE),

and using (3.6.20), (3.6.27) estimate

‖GBE(v,vn)−GBE(ṽ,vn)‖H1
R
≤c

(
k3

ε2 +k
)
‖v− ṽ‖H1

R
,

which is contractive so long as k ¿ ε
2
3 which holds with the large time-step

regime.

Within the large time-step regime the leading order iteration (3.6.17) sim-

plifies as k ¿ k2/ε2 and the dominant correction is given by the b1 term. To

compare to standard notation we rewrite the regime as ε2 ¿ k = δ¿ 1 and

replace the internal parameter δ with k, the result is the large time-step

interation (3.6.19).

3.6.2 Eyre-type iterations

For an Eyre iteration the map (3.6.2) takes the form

v+ k
ε2 L+v = vn − (g− gn)+ kg′

ε(R+εz)
+ k
ε2 (R−N ) , (3.6.28)
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where we have introduced the Eyre linear operator

L+ :=−
(
∂2

z +
ε

R+εz∂z

)
+ f ′+(g)=− 1

R+εz∂z ((R+εz)∂z)+ f ′+(g), (3.6.29)

the explicit-term residual

R(v,vn) := f−(gn)− f−(g)+ f ′−(gn)vn,

and the nonlinearity

N (v,vn) :=N+(v)−N−(vn),

which we further decompose into implicit and explicit parts

N+(v) := f+(g+v)− ( f+(g)+ f ′+(g)v),

N−(vn) := f−(gn +vn)− ( f−(gn)+ f ′−(gn)vn).

The operator L+ is self-adjoint in the weighted inner product for which

the eigenvalue problem takes the form

L+ψ= λ

R+εzψ,

subject to ∂zψ(−R/ε) = 0 and ψ→ 0 as z →∞. The coercivity estimate is sub-

stantially simpler than for BE as the operator L+ is strictly positive without

constraint.
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Lemma 3. There exists α+ > 0, independent of R ≥ 1, such that

〈L+v,v〉R ≥α+‖v‖2
H1

R
. (3.6.30)

for all v ∈ H1
R .

Proof. Since f ′+ ≥ 0 the normalized ground-state eigenfunction ψ0 of L+, sat-

isfies

λ+
0 = 〈L+ψ0,ψ0〉R =

∫ ∞

−R/ε

(
(∂zψ0)2 + f ′+(g)ψ2

0
)
(R+εz)dz > 0.

Since the ground-state eigenvalue is strictly positive, this establishes the L2
R

coercivity of L+ with α+ =λ+
0 . The H1

R coercivity follows as in Lemma 1.

We assume throughout our analysis that ‖v‖H1
R

and ‖vn‖H1
R

are uniformly

bounded by δ¿ 1. We denote the right-hand side of (3.6.28) by FE and intro-

duce

M+ := I + k
ε2 L+,

which is strictly contractive on the full space L2
R , and re-write the Eyre iter-

ation as

v =GE(v,vn,R−Rn) := M−1
+ ΠFE(v,vn,R−Rn). (3.6.31)

For the Eyre iteration the role of the projection Π is diminished as M+ is con-

tractive without it. Our goal is to show the existence of a map R = R̂E(v,vn,Rn),

for which

〈FE, g′〉R = 0, (3.6.32)
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to establish the contractive mapping properties of GE, and to develop asymp-

totic formula for R and v. We do this in the long time-stepping regime, k À ε2,

which has no lower bound for the Eyre scheme.

Lemma 4. Assume k À ε2. There exists a smooth function R̂E : BH1
R
(δ)×

BH1
R
(δ)×R 7→R such that the profile g = g(z;R) satisfies (3.6.32). The function

R = R̂E satisfies the implicit relation

R−Rn =− ε2

c−R
+O

(
ε3,δε,

ε4

k

)
. (3.6.33)

where we have introduced the leading order Eyre time constant

c− := 〈 f ′−(g)g′, g′〉R

‖g′‖2
R

> 0 (3.6.34)

when f ′− 6≡ 0. Moreover we have the Lipshitz estimate

|R̂E(v;vn,Rn)− R̂E(ṽ;vn,Rn)| ≤ cεδ‖v− ṽ‖R , (3.6.35)

so long as δ¿ 1.

Proof. Due to parity considerations, we remark that ‖g′‖2
R = R‖g′‖2

L2(R), up to

exponentially small terms. For brevity, and as an element of foreshadowing,

we approximate (R−Rn) by ε2 in the O-error terms. Addressing the terms in
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FBE one by one, we record

〈vn, g′〉R = 〈vn, (g′− g′
n)〉R =O(δε) (3.6.36)

〈g− gn, g′〉R =−‖g′‖2
R

(R−Rn)
ε

+O
(
ε3)

, (3.6.37)〈
g′

R+εz , g′
〉

R
= ‖g′‖2

L2(R) =
‖g′‖2

R

R
, (3.6.38)

〈R, g′〉R = 〈 f ′−(g)g′, g′〉R(R−Rn)
ε

+〈 f ′−(g)vn, g′〉R +O(ε2,εδ), (3.6.39)

|〈N , g′〉R | ≤ cδ2. (3.6.40)

With these reductions we can simplify the orthgonality condition, identifying

terms that are linear in R −Rn and most relevant higher order terms. The

result is the balance

R−Rn

k

(
1+ c−k

ε2

)
=− 1

R
− 〈 f ′−(g)g′,vn〉R

ε‖g′‖2
R

+O
(
ε,δ,

δ2

ε

)
, (3.6.41)

where c−, introduced in (3.6.34) is positive since f ′− ≥ 0 by assumption. The

largest terms and error terms come from the residual, and we kept the lower

order constant on the left-hand side to emphasize that in the long time-

stepping regime, the residual dominates the natural time-step term. Indeed,

the iteration is independent of step size, k, given at leading order by (3.6.41).

To obtain the Lipshitz estimate we observe from the bounds above that

dependence of R̂E on v arises from the balance of the linear R −Rn term in

the residual against the nonlinearity. Since both these terms are multiplied
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by k/ε2 this factor cancels and we have the balance

|R̂E(v)− R̂E(ṽ)| ≤ cε
〈 f ′−(g)g′, g′〉R

∣∣〈N (v), g′〉R −〈N (ṽ), g̃′〉R
∣∣ .

The nonlinearity satisfies the Lipshitz properties

‖N (v,vn)−N (ṽ,vn)‖R ≤ cδ‖v− ṽ‖R ,

while

‖g′− g̃′‖L2 ≤ c
|R̂E(v)− R̂E(ṽ)|

ε
.

Adding and subtracting 〈N (ṽ,vn), g′〉R and using (3.6.40), we arrive at the

estimates

|R̂E(v)− R̂E(ṽ)| ≤ c
(
εδ‖v− ṽ‖R +δ2|R̂BE(v)− R̂BE(ṽ)|) .

Imposing the condition δ¿ 1 yields (3.6.35).

We may now establish the main result on the Eyre sequence.

Proposition 3.6.2. There exists c > 0 such that for any k À ε2 the function

GE defined in (3.6.31) with R := R̂E(v;vn,Rn) maps BH1
R
(cε)×BH1

R
(cε) into

BH1
R
(GE(0,vn),ε2) and is a strict contraction, satisfying

‖GE(v,vn)−GE(ṽ,vn)‖H1
R
≤ cε2‖v− ṽ‖H1

R
. (3.6.42)

In particular GE has a unique fixed point in that set, which we denote vn+1.
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Moreover, if the Eyre balance parameter

γ := ‖L−1
+ Π◦ f ′−(g)g′‖H1

R∗ < 1 (3.6.43)

then for any ρ ∈ (0,1) there exists c > 0 such that for all v0 ∈ BH1
R
(cε) and

R0 > 1, the sequence {(vn,Rn)}N
n=1 satisfies vn ∈ BH1

R
(cε) and

Rn+1 −Rn

ε2 =− cE

Rn+1
+O

(
ε1−ρ) .

where the Eyre number, cE, is defined by

cE := ‖g′‖2
R

〈 f ′−(g)g′, g′〉R +〈K+L−1+ Π f ′−(g)g′, f ′−(g)g′〉R
> 0, (3.6.44)

where K+ > 0 is defined in (3.6.52) and K+L−1+ Π> 0 is self-adjoint.

Proof. To establish the contractivity of GE we follow the arguments for back-

ward Euler, sketching only the differences. We introduce

gE := (M−1
+ Π− M̃−1

+ Π̃)FE; (3.6.45)

and derive the expression

gE = M−1
+ Π(M̃+−M+)M̃−1

+ Π̃FE+

M−1
+ Π(Π− Π̃)FE + (Π− Π̃)M̃−1

+ Π̃FE. (3.6.46)

The operators M−1+ Π and M̃−1+ Π̃ are bounded as L+ has no small eigenvalues.
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Using (3.6.35) we estimate

‖M̃+−M+‖R∗ = k
ε
‖ f ′+(g)− f ′+( g̃)‖R∗ ≤ c‖g− g̃‖R∗,

≤ c
|R− R̃|

ε
≤ cδ‖v− ṽ‖H1

R
.

Similarly the projections satisfy

‖(Π− Π̃)‖R∗ = ‖g′〈g′, ·〉R − g̃′〈 g̃′, ·〉‖R ,

≤ cδ‖v− ṽ‖H1
R

Applying these estimates to (3.6.45,3.6.46) and following the proof of (3.6.35)

to estimate ΠFE we obtain

‖gE‖H1
R
≤c

ε2

k
δ‖v− ṽ‖H1

R
‖ΠFBE‖L2 ,

≤ c
(
ε2δ2

k
+ ε4δ

k
+εδ+δ2

)
‖v− ṽ‖H1

R
. (3.6.47)

Finally we write

GE(v,vn)−GE(ṽ,vn)= gE + M̃−1Π̃(FE −F̃E), (3.6.48)

and estimate the FE term from which the dominant contribution comes from

the residual

‖FE −F̃E‖R ≤ c
k
ε2 ‖ f−(g)− f−( g̃)‖R ≤ c

k
ε2

|R− R̃|
ε

,

≤ c
kδ
ε
‖v− ṽ‖R ,
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where we used (3.6.35) in the last inequality. In particular we deduce that

‖M̃−1
+ Π̃(FE −F̃E)‖H1

R
≤ cεδ‖v− ṽ‖R . (3.6.49)

Combining (3.6.47), (3.6.49) and (3.6.48), imposing δ= ε, and using k À ε2 we

arrive at strict contractivity on BH1
R
(cδ) for any fixed c > 0.

To establish bounds on the the fixed point vn+1 of GE(·;vn) we observe

from (3.6.30) that in the large time-stepping regime

‖M−1
+ Π‖H1

R∗ ≤ c
ε2

k
.

Using this result we expand

ΠFE = k
ε2Π

(
f ′−(g)g′ R−Rn

ε
+ f ′−(g)vn

)
+O

(
δ,ε2,k

)
.

Inverting M+ we find, at leading order

vn+1 = R−Rn

ε
L−1
+ Π f ′(g)g′+L−1

+ Π f ′−(g)vn +O(ε2,δ2)

In particular we deduce that

∥∥∥∥vn+1 − R−Rn

ε
L−1
+ Π f ′(g)g′

∥∥∥∥
H1

R

≤ γ‖vn‖H1
R
+O(ε2,δ2).

Arguing inductively, since the Eyre balance parameter γ < 1 and the func-

tions ‖L−1+ Π f ′−(g)g′‖H1
R

are uniformly bounded for all R ≥ 1, we deduce that

if δ := ‖v0‖H1
R
=O(ε) then the sequences {(R−Rn)ε−2}N

0 and {ε−1‖vn‖H1
R
}N
0 are

uniformly bounded, independent of ε¿ 1 and k À ε2 for all n ≤ N so long as
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Rn > 1 for all n = 0, . . . , N.

To improve this bound we require Lipschitz estimates on the vn compo-

nent of GE. To this end we find

‖GE(v;vn)−GE(v; ṽn)‖H1
R
≤ ‖M−1

+ Π(I + k
ε2 f ′−(g))‖H1

R∗‖vn − ṽn‖H1
R
,

≤
(
γ+O

(
ε2

k

))
‖vn − ṽn‖H1

R
. (3.6.50)

Here we introduce the quasi-steady parameter ρ ∈ (0,1). Since |Rn −Rm| =
O(ε2−ρ) for |n−m| ≤ Nρ :=≤ ε−ρ we infer that

∥∥L−1
+,nΠn f ′(gn) f ′n −L−1

+,mΠm f ′−(gm)g′
m

∥∥
H1

R
≤ c

p
ε,

for all such n and m. For n > Nρ we define the quasi-equilibrium

vn∗ := Rn −Rn−1

ε
En(z)

where En is the R = Rn translate of

E := K+L−1
+ Π f ′−(g)g′. (3.6.51)

Here the self-adjoint operator

K+ := (
I −L+Π◦ f ′−(g)

)−1 > 0, (3.6.52)

is well defined since ‖L+Π◦ f ′−(g)‖H1
R∗ = γ< 1 by assumption. Using the Lip-
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schitz property (3.6.50) of GE and the quasi equilibrium relation

‖vn∗−GE(vn∗;vn∗)‖H1
R
=O(ε2),

we deduce that

‖vk+1 −vn∗‖H1
R
≤ γ‖vk −vn∗‖H1

R
+O

(
ε2−ρ) .

for k = n−mε, . . . ,n. Since γNρ ¿ ε we deduce from an inductive argument

that ∥∥∥∥vn − Rn −Rn−1

ε
En

∥∥∥∥
H1

R

=O(ε2−ρ),

for all n > Ns. Inserting this result in (3.6.33) we arrive at the leading order

Eyre iteration (3.6.44).

Remark 7. There are two examples of particular relevance

f (u)= u3 −u,

with the decomposition f+ = (1+β)u3 and f− = u+βu3 for β > 0. The choice

β= 0 is classical and very degenerate, as in this case f ′−(u) = 1 and the corre-

sponding Eyre balance parameter γ, defined in (3.6.43) is zero, and the Eyre

number, (3.6.44) is 1. In this case it is possible to rewrite Eyre’s method as

backward Euler with a rescaled time. In particular the slow convergence to

equilibrium will not be in evidence. For larger values of β the balance pa-

rameter increases from zero and the Eyre number decreases from 1. As the

balance parameter increases through 1 we anticipate enhanced slowing of the
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front profile as the Eyre number tends to zero. The choice of non-zero β can

be viewed as spurious, a deliberate attempt to foul the method. A more robust

example of non-zero balance arises naturally through the model

f (u)= u5 −βu3,

with β ≥ 1. This suggests the optimal decomposition f+ = u5 and f− = βu3.

Here, unambiguously, increasing β increases the balance parameter and will

lead to non-trivial enhanced slow-down with potential instability as γ in-

creases through 1. These analytic predictions are validated in a computational

study below.

Remark 8. To leading order, in the large time-stepping regime k À ε2, the

Eyre iteration recovers backward Euler with the substitution k 7→ cEε
2. This

reduces to the exact result for the case f (u) = u3 −u and f−(u) = u, for which

f ′− = 1, as the Eyre constant reduces to 1 since Π f−(g)g′ =Πg′ = 0.

The strong contractivity of GE with respect to v, given in (3.6.42), arises

from the strong convexity with respect to v, but the slow evolution and marginal

convergence to the quasi-equilibrium, given in (3.6.50) arises from the balance

between the implicit and explicit terms. The parameter γ measures this bal-

ance, with the quasi-equilibrium structure lost as γ increases towards 1. In-

deed, since ‖K+‖H1
R∗ ∼ (1−γ)−1, the Eyre constant will generically tend to zero

as γ→ 1.
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Eyre with f (u)= u5 −u3

ε M E
0.2 5,726 0.001
0.1 21,947 (3.83) 0.005
0.05 86,499 (3.94) 0.007
0.025 343,525(3.97) 0.007

Table 3.9: Computational results for the AC benchmark problem with fixed
local error tolerance σ= 10−4 and ε varied, using Eyre’s method with reaction
term f (u) = u5 − u3. Here, M is the total number of time steps taken (with
the ratio to the value above in brackets) and E is the error in the benchmark
time.

Computational Validation of Remark 7

We perform computations for AC with the non-classical f (u) = u5 − u3

(which also leads to meta-stable dynamics of curvature motion) using the

same initial conditions and accuracy criteria as described in Section 3.4.1.

BE performs almost identically to the results shown in Tables 3.3 and 3.4 for

the classical f (u)= u3−u in terms of accuracy and variation of time steps with

ε and σ. This matches the theory in Section 3.6.1 which can be summarized

as BE has profile fidelity when k = o(ε).

When Eyre’s method is applied to the dynamics with f (u) = u5 −u3, with

the natural splitting suggested in Remark 7, profile fidelity is lost as pre-

dicted. The formal prediction of k = O(ε3/2) which was seen computationally

for f (u)= u3−u in Table 3.4 is not observed for f (u)= u5−u3. Rather, we see

k = O(ε2) as predicted by the theory in the previous section. The numerical

results are shown in Table 3.9.
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3.7 L2
R coercivity of L

Here we show the technical argument for Lemma 1. For u,v ∈ H1(R) we

define the inner product

〈u,v〉` :=
∫ `

−`
u(s)v(s)ds,

with the standard norms L2
`

and H1
`

while L2
`c is defined in R\[−`,`]. Let L0

be as defined in (3.6.6).

Lemma 5. Fix `0 > 0 sufficiently large there exists α > 0 such that for all

`> `0

〈L0u,u〉` ≥α, (3.7.1)

for all u ∈ H1
`
∩L2(R) satisfying 〈u, g′〉L2(R) = 0 and 1= ‖u‖L2

`
≥ ‖u‖L2

`c
.

Proof. Let φ be the minimizer of 〈L0u,u〉` over H1(R) subject to ‖u‖L2
`
= 1 and

the full-line orthogonality 〈u,ψ0〉L2(R) = 0. By scaling, the minima is attained

with ‖φ‖L2
`
= 1

2 and satisfies

L0φ=λφ, on[−`,`],

subject to Neumann boundary conditions φx(±`) = 0, in addition to the full

line orthogonality condition. The operator L0 on the truncated domain has

eigenvalues λ`0 < λ`1 < ... which are O(e−d`) far away from the eigenvalues

of L0 on the full line. In particular λ`0 may be negative, but the rest are

uniformly positive. In L2
`

we partition φ = βψ`
0 +φ⊥, where ψ`

0 is the L2
`
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ground state of L0 and φ⊥ ∈ L2
`

is L2
`

orthogonal to ψ`
0. Then we have

〈L0φ,φ〉` ≥λ0β
2 +λ`1‖φ⊥‖2

L2
`

. (3.7.2)

On the other hand the orthogonality condition implies that

〈φ, g′〉R = 0=β+〈φ, g′〉`c .

where the subscript `c denotes integration over R\[−`,`] with the corre-

sponding norms. In particular we deduce that

|β| ≤ ‖φ‖L2
`c
‖g′‖L2

`c
≤ ‖g′‖L2

`c
‖φ‖L2

`
.

Since g′ decays exponentially at ±∞, is complementary norm is exponentially

small in `. From orthogonality of ψ`
0 and φ⊥ we have

‖φ‖2
L2
`

=β2 +‖φ⊥‖2
L2
`

≤ ‖φ⊥‖2
L2
`

+‖g′‖2
L2
`c
‖φ‖2

L2
`

.

or equivalently

1= ‖φ‖2
L2
`

≤ 1
1−‖g′‖2

L2
`c

‖φ⊥‖2
L2
`

,

and taking ` large enough we use these bound in (3.7.2) to show that α is

exponentially close to λ`1 > 0.

To complete the proof of Lemma 1 we take ` sufficiently large to apply

Lemma 5 and then take ε sufficiently small that ε|z| ≤ ε`¿ 1. Under these

conditions L2
`

and L2
R(−`,`) are equivalent norms, uniformly in ε, and we
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have uniform L2
R(−`,`) coercivity of L. Conversely, L is clearly L2

R coercive on

[−R/ε,∞)\[−`,`] since f ′(g) is strictly positive there. Clearly L is uniformly

coercive on function with more than half their L2
R mass in [−R/ε,∞)\[−`,`].

The g′ orthogonality condition implies approximate orthogonality to ψ0 for `

large. From these we deduce the full L2
R-coercivity of L over X .
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Chapter 4

Various formulations and

their numerical results of

oxygen depletion problems

The Oxygen Depletion problem is an implicit free boundary value prob-

lem. The dynamics allow topological changes in the free boundary. We show

several mathematical formulations of this model from the literature and give

a new formulation based on a gradient flow with constraint. All formulations

are shown to be equivalent. We explore the possibilities for the numerical

approximation of the problem that arise from the different formulations. We

show a convergence result for an approximation based on the gradient flow

with constraint formulation that applies to the general dynamics including

topological changes. More general (vector, higher order) implicit free bound-

ary problems are discussed. Several open problems are described.
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4.1 Discussion

The Oxygen Depletion (OD) problem is a free boundary value problem

of implicit type. Implicit here means that the free boundary is specified im-

plicitly by an extra boundary condition rather than explicitly as an interface

normal velocity as for a Stefan problem [72, 79, 86]. The OD problem was in-

troduced as a model of oxygen consumption and diffusion in living tissue but

closely related problems have similar problem structure. Some of the early

work is described in [25] with a great deal of subsequent interest from the

analysis and numerical research communities in [6, 36, 63, 75, 79]. In the

current work, we pursue an understanding of the analysis of the OD problem

as the simplest example of an implicit free boundary value problem. We are

motivated by an interest in a general class of implicit free boundary value

problems of which some examples are given at the end of this work. We point

out several open problems which are summarized in the final section.

By way of introduction, we present the OD problem in 1D for an unknown

u(x, t) for x ∈ [0, s(t)] with a single free boundary x = s(t) and a no flux con-

dition ux = 0 at x = 0. At the free boundary, u = 0 and additionally ux = 0.

These two conditions implicitly define the free boundary x = s(t). In higher

dimensions it is the vanishing of the solution value and is normal derivative

at the boundary. The solution obeys

ut = uxx −1 (4.1.1)

for x ∈ [0, s(t)] and it is natural to extend u ≡ 0 for x > s(t) in a C1 continuous
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Figure 4.1: A high accuracy 1D solution of the OD problem without topolog-
ical change (left). 1D solutions of the OD problem with topological changes
with a capturing method (right).

way. We consider positive initial conditions for u in [0, s(0)). This is one

of the forms of the OD problem forshadowed by the title. In another OD

formulation, the time derivative ut satisfies an explicit free boundary value

problem that can be described as a one sided Stefan problem from which

short time solution existence and regularity can be inferred under certain

conditions. A similar reformulation can be made with an explicit velocity as

a higher derivative of the solution. A further formulation, suitable only in 1D

and specialized geometries in higher dimensions, results when x ∈ [0, s(t)] is

mapped linearly to y ∈ [0,1]. The numerical approximation of the resulting

fixed boundary problem is of Differential Algebraic Equation (DAE) type and

can achieve high accuracy. Our numerical approximation is inspired by [75],

where the author shows that s(t) is smooth using the idea that maps the free

domain to a fixed domain.

An example of the dynamics computed on the DAE formulation in the

75



4.1. Discussion

Figure 4.2: A captured 2D solution of the OD problem with topological
change.

mapped region is shown in Figure 4.1 (left). Here, s(t) initially moves to the

right driven by diffusion and then to the left as u values decrease due to

the consumption term. The solution in this formulation ends when s(T) = 0

(u ≡ 0). A specialized method in this general framework was developed in

[63] to accurately compute both the solution and the end time of the dynam-

ics. The formulations discussed so far are suitable when the solution does

not undergo any topological change. Solutions of (4.1.1) can go negative, but

physically relevant values of concentration have u ≥ 0. In the 1D case, pre-

serving nonnegativity results in the break up or merger of intervals where

u > 0 as shown in Figure 4.1 (right). Topological change can be more complex
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in higher dimensions as seen in Figure 4.2.

A weak form of the solution can be introduced using a variational inequal-

ity approach (4.2.3)[62, 73]. In what follows, we use this formulation as the

basis for equivalence to the others. This formulation is amenable to approx-

imation using the Augmented Lagragian Method [49, 50, 53]. The compu-

tations in Figures 4.1(right) and 4.2 are done with a method based on the

formulation of the OD as L2 gradient flow with constraint on the energy from

the elliptic obstacle problem. The obstacle problem has had considerable in-

terest in the literature [11, 40, 56, 65, 87]. We also introduce a regularized

approach with parameter ε, similar to the approach in [6], where we approx-

imate the non-linearity by a family of Lipschitz monotone nonlinear terms.

We show that the limit as ε→ 0, the approximated solutions uε converges to

the desired solution to OD. Throughout this chapter we show the equivalence

of different formulations discussed above, each of which opens up possibilities

for numerical approximation. We pursue some of the numerical approaches

in more detail.

This chapter is organized as follows. In Section 4.2 we present the dif-

ferent formulations with technical details and show their equivalence. In

Section 4.3 we present the numerical schemes and provide some analytical

convergence results in some cases, numerical evidence of convergence in oth-

ers. In Section 4.4 we show some additional results on the dynamics. In

Section 4.5 we present some other implicit free boundary value problems of

interest and indicate how our results can be extended to them, with some

open questions. We end with a short Summary that includes a list of open

problems.
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Notation in this chapter

We define the space H1+(Ω) := {u ∈ H1(Ω) : u ≥ 0}. For bounded domains

Ω we add homogeneous Neumann boundary conditions on ∂Ω. We further

denote J to be collection of functions v ∈ L2(0,T;H1(Ω)) such that v(t) ∈ H1+

for a.e. t ∈ (0,T). In some instances, we denote space derivative in 1D case

by u′(x) and time derivative by u̇(t). We also abuse the notation Ω to denote

(0,1) in 1D case.

4.2 Equivalent Formulations

4.2.1 Standard formulation in 1D

The one-dimensional oxygen depletion problem with associated free bound-

ary and initial conditions is as follows:



ut = uxx −1, 0≤ x ≤ s(t)

u(x, t)= 0, x > s(t)

ux(0, t)= 0, t > 0

u(s(t), t)= ux(s(t), t)= 0, t > 0

u(x,0)= u0(x), 0≤ x ≤ 1

s(0)= 1.

(4.2.1)

We assume here that u0 satisfies all necessary smoothness and compatibility

assumptions needed in the analyses cited below. By literature convention, we

consider here a problem with a fixed, no-flux boundary condition at x = 0 and
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only one free boundary s(t) > 0. Uniqueness and lack of topological change

when u′
0 ≤ 0 follows from a modified maximum principle argument [36].

Existence can be seen by considering v = ut which satisfies a standard

Stefan problem [25] with explicit interface velocity:



vt = vxx, 0≤ x ≤ s(t)

vx(0, t)= 0, t > 0

v(s(t), t)= 0, vx(s(t), t)=−ṡ(t), t > 0

s(0)= 1.

One can check the function u = ∫ t
0 v dτ solves the oxygen depletion problem.

To prove existence and uniqueness of Stefan problem, one can verify that the

map

T (s)(t) := 1−
∫ t

0
vx(s(τ),τ)) dτ, T ≥ t ≥ 0,

defines a contraction map [59].

Remark 9. The reformulation in v = ut to an explicit free boundary problem

with interface velocity equal to −vx can be reinterpreted as a normal velocity

for the problem for u with velocity equal to −vx = −utx = −uxxx. The authors

are not aware of any analysis or computational methods based on this velocity

expression with higher order spatial derivatives.

We make the following plausible conjecture for the dynamics of the Cauchy

problem in 1D with initial conditions u0(x) ∈ H1+ with compact support:

Conjecture 4.2.1. Assume u0 has a finite S (0) where S (t) counts the number
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of free boundary points:

S (t)= {x : u(x, t)= 0 and u(y, t)> 0 for some y in every neighbourhood of x} .

Then

(i) S (t) is finite for every t > 0.

(ii) There exits a finite increasing sequence of times t j, j = 0. . . M with t0 = 0

and card S (t) := n j constant on every interval (t j, t j+1) and u ≡ 0 for

t ≥ tM .

(iii) S (t)= {s1(t), s2(t), . . . sn j (t)} for sl(t) smooth on (t j, t j+1).

(iii) u(x, t) is C1 for t > 0 and C∞ except at free boundary points.

Recent related results have been shown for the Stefan problem [37]. Simi-

lar analysis of the OD problem is complicated by the reaction term that allows

the formation of new zones of constraint.

4.2.2 Mapped domain formulation in 1D

Considering the same smooth solutions in 1D discussed in the previous

section, we consider s(t) > 0 in t ∈ [0,T], take y = x/s(t), and reformulate oxy-

gen depletion problem as

uyy + ṡsyuy − s2ut − s2 = 0 (4.2.2)

with boundary conditions uy(0, t) = u(1, t) = uy(1, t) = 0. Over a short time

period, we assume that ṡ(t) and s(t) are uniformly bounded, thus the linear
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operator is parabolic. Assuming s(t) is known, uniqueness of u is not an issue;

however, to prove uniqueness of the solution pair (s, ũ), we introduce the map

G : X →Y , where X is the closed subspace of H1(H2([0, s(t)]); [0,T])×C1([0,T])

that solves OD system and Y is the closed subspace of H1(H2([0,1]); [0,T])×
C1([0,T]) that solves the reformulated system:

G ((u(x, t), s(t))= (u(y, t), s(t)) := (U(y · s(t), t), s(t)).

where U(x, t) is the solution from the previous section. One can check that

the map G is a bijection and so all solutions of (4.2.2) are equivalent to the

solutions in the standard formulation of Section 4.2.1. A numerical method

based on this formulation is presented in Section 4.3.1.

Remark 10. A direct analysis of this formulation would be useful as a step-

ping stone to a convergence proof for the numerical approximation in Sec-

tion 4.3.1 and an analysis of the general class of problems in Section 4.5. We

have not been able to make progress on such an analysis. There are subtleties

in the problem: note that changing −s2 to +s2 makes the problem ill defined

as s(t)=+∞ for t > 0 in that case.

4.2.3 A parabolic variational inequality formulation

To proceed with the discussion of the problem in higher dimensions with

topological changes, we consider the standard approach to weak solutions in

this setting: a variational inequality formulation [57, 62]. We consider the
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following problem: find a function u ∈J with u(0)= u0 ∈ H1+ that solves

∫ t

0

∫
Ω

ut · (v−u)+
∫ t

0

∫
Ω
∇u ·∇(v−u)≥

∫ t

0

∫
Ω

u−v; for all v ∈J , a.e. t ∈ (0,T).

(4.2.3)

Proposition 4.2.2. The variational inequality (4.2.3) has at most one solu-

tion and in fact suppose u1 and u2 solve (4.2.3) with distinct initial conditions

u10 and u20 then

‖u1 −u2‖L∞(0,T;L2(Ω)) ≤ ‖u10 −u20‖L2(Ω). (4.2.4)

Proof. Note u j ∈J satisfies (4.2.3) for j=1,2, in particular

∫ t

0

∫
Ω
∂tu1 · (u2 −u1)+

∫ t

0

∫
Ω
∇u1 ·∇(u2 −u1)≥

∫ t

0

∫
Ω

u1 −u2,∫ t

0

∫
Ω
∂tu2 · (u1 −u2)+

∫ t

0

∫
Ω
∇u2 ·∇(u1 −u2)≥

∫ t

0

∫
Ω

u2 −u1.

Summing two inequalities above and denote w = u1 −u2, one has

∫ t

0

∫
Ω
∂tw ·w+

∫ t

0

∫
Ω
∇w ·∇w ≤ 0

=⇒
∫ t

0

∫
Ω

(w2)t ≤ 0 =⇒ ‖w‖L∞(0,T;L2(Ω)) ≤ ‖w0‖L2(Ω).

Theorem 3. There exists a unique solution to the variational inequality (4.2.3).

Note that this can be done by a standard monotone operator argument and

we refer to [62].
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Note that any smooth solution u to (4.2.1) must solve (4.2.3) and by unique-

ness the solution to (4.2.3) therefore solves OD. To see this, we first observe

that u ≥ 0 and therefore u ∈ J . Resulting from that, we obtain that for any

v ∈J and for a.e. t ∈ (0,T)

∫ t

0

∫
Ω

ut · (v−u)+
∫ t

0

∫
Ω
∇u ·∇(v−u)=

∫ t

0

∫ s(τ)

0
(ut −uxx)(v−u) dxdτ

=
∫ t

0

∫ s(τ)

0
u−v dxdτ≥

∫ t

0

∫
Ω

u−v.

4.2.4 A gradient flow formulation

In this section, we formulate the OD problem as the L2 gradient of the

energy from the elliptic obstacle problem. A formal calculation with

E (t) :=
∫

1
2
|∇u|2 +u

leads to
dE

dt
=−

∫
(∆u−1)2.

It is convenient to present the equivalence of the gradient flow formulation

as the limit of implicit time steps as this gets us half way to the convergence

result for the fully discrete method described in Section 4.3.2. The spatially

continuous, time discrete solutions un approximate u(·,nk), where k is a time

step. We consider the following minimization problem for u = un+1 to the

following energy functional:

E[u]=
∫
Ω

1
2
|∇u|2 + 1

2k
(u−un)2 +u, (4.2.5)
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for u ∈ H1+. Existence and uniqueness of the minimizer is guaranteed by the

standard calculus of variation technique and convexity of the energy func-

tional [81].

Remark 11. By defining the discrete energy E n := ∫ 1
2 |∇un|2 +un, we can see

that E n+1 ≤ E n. This can be derived by considering E[u]= ∫ 1
2 |∇u|2+u+ (u−un)2

2k

with E[un+1]≤ E[un]. This gives the discrete gradient flow structure.

Euler-Lagrange equation of the energy minimizer

We will derive the corresponding Euler-Lagrange equation for the mini-

mizing problem following the idea from [40]:

Theorem 4. Suppose u is the unique minimizer to the energy minimizing

problem (4.2.5), then u is the (weak) solution to the following modified back-

ward Euler scheme:
u−un ·χ{u>0}

k
=∆u−χ{u>0}.

To begin with, we consider an equivalent energy minimizing problem:

Ẽ[u] :=
∫

1
2
|∇u|2 + 1

2k
u2 + (1− un

k
)u+,

subject to

K̃ := {v ∈ H1(Ω) :
∂v
∂n

|∂Ω = 0}

where u+ =max(u,0).

Lemma 6. There exists a unique ũ ∈ K̃ such that

Ẽ[ũ]=min
v∈K̃

Ẽ[v];
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moreover such ũ is the unique minimizer to (4.2.5).

Proof. Firstly, by similar argument, the existence and uniqueness of this en-

ergy minimizing problem can be proved.

Now to show the equivalence of these two minimizing problem, we recall

that the minimizer u ≥ 0, so

min
v∈K

E[v]= E[u]= Ẽ[u]≥min
v∈K̃

Ẽ[v];

On the other hand, to show

min
v∈K

E[v]≤min
v∈K̃

Ẽ[v],

we note that for any v ∈ K̃ , the corresponding v+ ∈ H1+ under the assumption

that un ≥ 0. As a result,

E[u]≤ E[v+]≤ Ẽ[v]

for any v ∈ K̃ , hence

E[u]≤ inf
v

Ẽ[v].

Now since E[u]= Ẽ[u]=min Ẽ[v], we have ũ = u by the uniqueness.

It remains to derive the Euler-Lagrange equation for this new energy

minimizing scheme.

Proposition 4.2.3. Suppose u is the unique minimizer to Lemma 6, then u
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4.2. Equivalent Formulations

is the (weak) solution to the following modified backward Euler scheme:

u−un ·χ{u>0}

k
=∆u−χ{u>0}.

The proof of this result is found in Section 4.6.

Regularity of the minimizer

We follow the idea in [8] to formulate our problem in a variational in-

equality:

u ∈ H1
+ :

∫
Ω
∇u·∇(v−u)+ u

k
(v−u) dx ≥

∫
Ω

(un

k
−1

)
·(v−u)for all v ∈ H1

+. (4.2.6)

To see the equivalence of the energy minimization and elliptic variational

inequality we now state the proposition.

Proposition 4.2.4. Any solution to the minimization problem (4.2.5) is also

a solution to the variational inequality (4.2.6) and vice versa.

Proof. Suppose u is an energy minimizer to (4.2.5). Let v ∈ H1+, note that H1+

is convex then (1−λ)u+λv ∈ H1+ for any λ ∈ [0,1]. Using (1−λ)u+λv as a

competitor in E[u]≤ E[(1−λ)u+λv], we can derive from the order O(λ):

∫
Ω
∇u ·∇(v−u)+ u

k
(v−u) dx ≥

∫
Ω

(un

k
−1

)
· (v−u), ∀ v ∈ H1

+.

The reverse can be proved similarly.

Note that this formulation uses convexity of H1+; the optimal regularity of
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u is C1,1
loc:

Theorem 5 (regularity). Suppose u is a solution to (4.2.5) (or (4.2.6)), then

there exists a positive constant C such that

‖∆u‖∞ ≤ C
(
1+ 1

k
‖un‖∞+‖∆un‖∞

)
.

Moreover, for each compact K ⊂Ω there exists a positive constant c(K)> 0 such

that

sup
i, j

sup
K

|D i ju(x)| ≤ c.

The proof follows from [8], where penalty argument is applied together with

a non-degeneracy argument, which we refer to Lemma 1.2 from [8].

Remark 12. This upper bound can be improved by applying energy gradient

flow. By competing u with un in E[u]≤ E[un], we have

1
k
‖u−un‖2

2 ≤ ‖∇un‖2
2 +‖un‖1.

By applying the penalty argument in [8], we can derive that

‖∆u‖2 ≤ C(‖un‖H2 +1).

Time-discrete variational inequality and Rothe’s method

In this section, we will show the energy minimization scheme has a limit

as the time steps k → 0 that solves the parabolic variational inequality (4.2.3).

We consider the energy minimization scheme as in previous sections and by

Proposition 4.2.4, it suffices to show the following lemma.
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Lemma 7 (Rothe’s method). Suppose for each j = 1, · · ·M, where M = T/k,

u j is the unique minimizer for E j(u) as defined in Theorem 4. Then u =
limk→0 uM(x, t) exists and solves the parabolic variational inequality (4.2.3).

Here uM is the associated linear interpolation defined by

uM(x, t) := (1−θ) ·u j(x)+θ ·u j+1(x) , for t = ( j+θ)k, θ ∈ [0,1).

Proof of Lemma 7. Our proof follows [51, 73]. First, note that u j is the unique

minimizer of E j and as discussed earlier in Proposition 4.2.4, it satisfies the

elliptic variational inequality (4.2.5):

∫ 1

0
u′

j · (v′−u′
j)+

u j

k
(v−u j) dx ≥

∫ 1

0

(u j−1

k
−1

)
· (v−u j)for all v ∈ H1

+. (4.2.7)

Taking v = u j−1, one can derive

〈u′
j,u

′
j−1 −u′

j〉+
1
k
〈u j,u j−1 −u j〉 ≥ 1

k
〈u j−1,u j−1 −u j〉−〈1,u j−1 −u j〉.

Similarly we take v = u j for j−1’s inequality case

〈u′
j−1,u′

j −u′
j−1〉+

1
k
〈u j−1,u j −u j−1〉 ≥ 1

k
〈u j−2,u j −u j−1〉−〈1,u j −u j−1〉.

Adding the two inequalities above gives

1
k
‖u j −u j−1‖2

2 +‖u′
j −u′

j−1‖2
2 ≤

1
k
〈u j −u j−1,u j−1 −u j−2〉.
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Note that when j = 1, we choose v = u0 and hence

1
k
‖u1−u0‖2

2+‖u′
1−u′

0‖2
2 ≤

∣∣〈u′
0,u′

1 −u′
0〉

∣∣+|〈1,u0 −u1〉| ≤
(‖u′′

0‖2 +1
)·‖u1−u0‖2.

Therefore we obtain that

‖u j −u j−1

k
‖2 ≤ C

for any j = 1, · · · , M and a positive absolute constant C. Note that ˙uM(t) =
u j−u j−1

k , therefore by Arzelà-Ascoli, uM(t) converges to some function u in

C([0,T],L2((0,1))). Then we can define

ũM(t)= u j , for t ∈ [ jk, ( j+1)k),

similar to Lemma 8 and Remark 14, ũM converges to the same u. Indeed, u′
M

converges to u′ weakly in L2((0,T),L2((0,1))). As a result, rewrite (4.2.7): for

any v ∈ H1+

〈 ˙uM(t),v(t)− ũM(t)〉+〈ũM
′,v′− ũM

′〉 ≥−〈1,v− ũM〉, (4.2.8)

which holds for a.e. t ∈ (0,T). For arbitrary τ1 < τ2 in [0,T],

∫ τ2

τ1

〈 ˙uM(t),v(t)− ũM(t)〉+〈ũM
′,v′− ũM

′〉 dt ≥−
∫ τ2

τ1

〈1,v− ũM〉 dt, (4.2.9)

letting k → 0, we have the desired result

∫ τ2

τ1

〈u̇(t),v(t)−u(t)〉+〈u′,v′−u′〉 dt ≥−
∫ τ2

τ1

〈1,v−u〉 dt, (4.2.10)
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for almost every τ1 < τ2 in [0,T].

4.2.5 A regularized formulation

We introduce a formulation using a regularization method with parame-

ter ε proposed first in [6]. Here, we will see convergence in regularized solu-

tions uε(x, t) as ε→ 0 to the other OD formulations.

∂tuε = ∂xxuε− fε(uε), (4.2.11)

where

fε(uε)=


1 uε > ε

uε
ε

uε ≤ ε,
(4.2.12)

with same initial condition u0(x). Note that fε(x) is a Lipschitz function and

as a result uε exists as a smooth solution for each ε> 0 with uε(x, t)> 0 for all

x > 0 and t > 0.

We consider uε1 and uε2 with ε1 < ε2. Denote their difference by w =
uε1 −uε2 , then

∂tw−∂xxw =− fε1(uε1)+ fε2(uε2).
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Note that,

− fε1(uε1)+ fε2(uε2)=



0 , if uε1 > ε1 , uε2 > ε2

−uε1

ε1
+1 , if uε1 ≤ ε1 , uε2 > ε2

−1+ uε2

ε2
, if uε1 > ε1 , uε2 ≤ ε2

−uε1

ε1
+ uε2

ε2
, if uε1 ≤ ε1 , uε2 ≤ ε2

. (4.2.13)

We observe that

−1+ uε2

ε2
≤ 0 , if uε1 > ε1 , uε2 ≤ ε2

−uε1

ε1
+ uε2

ε2
=−w

ε1
+uε2 ·

(
1
ε2

− 1
ε1

)
, if uε1 ≤ ε1 , uε2 ≤ ε2

uε1 < uε2 , if uε1 ≤ ε1 , uε2 > ε2;

so if we assume the maximal value of w is achieved at (x0, t0) with x0 ∈ [0,1]

and t0 > 0, then w(x0, t0) > 0, ∂tw(x0, t0) = 0 and ∂xxw(x0, t0) < 0. It contra-

dicts all 4 cases discussed above. It gives a partial result of the following

statement:

Theorem 6. Suppose a sequence of classical functions {uε} solve (4.2.11), then

uε is monotonically decreasing as ε decreases to 0. Moreover, the limiting

function

lim
ε→0

uε = u

holds pointwisely. This limiting function u solves the variational inequality

(4.2.3).

The details of the proof can be found in Section 4.7. An alternate conver-
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4.3. Numerical Approximation

Figure 4.3: Cell centered finite difference spatial approximation of the 1D
mapped domain formulation

gence statement and proof is given in Section 4.8. While there is theoretical

insight to be gained from this formulation, it is unnatractive for numerical

approximation for application purposes as free interface locations are not eas-

ily identified from ε> 0 results.

4.3 Numerical Approximation

4.3.1 Mapped domain method

We consider the discretization of the mapped domain formulation (4.2.2)

in space using cell centred finite differences. We first discretize in space,

leaving time continuous (known as a Method of Lines – MoL – discretization)

with approximations u j(t) ≈ u(( j−1/2)h, t), j = 1. . . N where h is the uniform

grid spacing with N subintervals of y ∈ [0,1]. The interface location s(t) is

approximated by S(t).

Boundary conditions are implemented using ghost points [84] u0(t)≈ u(−h/2, t)
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4.3. Numerical Approximation

and uN+1(t)≈ u(1+h/2, t) depicted in Figure 4.3. Boundary conditions at y= 1

are implemented using second order averages and differences:

(uN+1 +uN )/2 = 0 (4.3.1)

(uN+1 −uN )/h = 0 (4.3.2)

which implies that uN = uN+1 = 0. The no-flux boundary condition at y= 0 is

approximated similarly. The MoL discretization for the interior equations is

D2u j +SṠyD1u j −S2u̇ j −S2 = 0. (4.3.3)

where D2 and D1 are the standard centered second order finite difference

operators. The system (4.3.1,4.3.2,4.3.3) is a Differential Algebraic Equation

(DAE) [3] and has index one. The computation shown in Figure 4.1 (left) is

of this system using Implicit (Backward) Euler time stepping with Newton

iterations for the resulting nonlinear system at each time step. In a compu-

tational study, we observe errors of size O(h2)+O(k) where k is the time step,

as expected for a second order spatial and first order temporal discretization.

Remark 13. The convergence of the method has not been proved. The missing

direct analysis discussed in Remark 10 could give insight.

4.3.2 Energy minimization method

In this section, we continue the discretization of the gradient flow for-

mulation from Section 4.2.4 and discretize in space with ui
n ≈ u(ih,nk). We

consider the discretization in one spatial dimension for ease of presentation
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4.3. Numerical Approximation

but the argument extends to higher dimensions. The energy minimization

problem (4.2.5) is approximated by the discrete minimization of

EN
n+1 =

N−1∑
i=0

h
2

(
ui+1 −ui

h

)2

+h ·
N∑

i=0

(
1

2k

(
ui −ui

n

)2 +ui
)
, (4.3.4)

where N the number of grid points with N = 1/h, assuming without loss of

generality that all positive values of u are captured in the interval (0,1).

We solve this minimization problem subject to all non-negative discrete data

~uN
n+1 := (u1

n+1,u2
n+1, · · · ,uN

n+1). This is a convex, quadratic minimization prob-

lem with linear, inequality constraints and so has a unique global minimum.

We show below that the solution to the discrete optimization problem con-

verges to the OD solutions as h,k → 0. In Section 4.3.3 we discuss the tech-

nique we use to solve the optimization problem. This method gives the com-

putational results shown in Figures 4.1 (right) and 4.2.

Denote M = T/k, we use {~un}n=1 to define an approximate solution:

uN,M(x, t) :=



(1− t) ·u0(x)+ t ·uN
1 (x) for t ∈ [0,k)

· · ·

(1− t) ·uN
i (x)+ t ·uN

i+1(x) for t ∈ [ik, (i+1)k)

· · ·

(1− t) ·uN
M−1(x)+ t ·uN

M(x) for t ∈ [(M−1)k,T],

(4.3.5)

where u0(x) is the initial condition and for 1≤ j ≤ M,

uN
j (x)=

N−1∑
i=1

ui
j ·∆(Nx− i), (4.3.6)
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where ∆(x)= (1−|x|)+, the linear approximation function, therefore the point-

wise limit

u j = lim
N→∞

uN
j (4.3.7)

exists. For convenience we also define

ũN
j (x) :=

N∑
i=1

ui
j ·χ((i−1)h,ih)(x) (4.3.8)

where χI (x) is the characteristic function on the interval I and

uM(x, t) := (1− t) ·u j(x)+ t ·u j+1(x) , for t ∈ [ jk, ( j+1)k). (4.3.9)

Remark 14. We observe that both approximations uN
j (x) and ũN

j (x) will con-

verge to the same limit in L2(0,1) and similarly for uN,M(x, t) and �uN,M(x, t).

If the energy is bounded then by Poincaré inequality and Arzelà-Ascoli Thm,

uniform convergence can be obtained.

Theorem 7. Suppose ~uN
n+1 solves the discrete minimization problem (4.3.4),

then

u(x, t)= lim
M→∞

lim
N→∞

uN,M

with h = 1/N and k = T/M exists in J and u is the solution to the variational

inequality (4.2.3) that is

∫ t

0

∫ 1

0
ut · (v−u)+

∫ t

0

∫ 1

0
u′ · (v′−u′)≥

∫ t

0

∫ 1

0
u−v; for all v ∈J , a.e. t ∈ (0,T).

The proof relies on 2 lemmas. To start with, we give definitions of gamma

convergence of energy functionals shown in Lemma 8 as given in [27]:
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Definition 4.3.1 (Gamma convergence). We say that the sequence of function-

als {En} : X → R∪ {−∞,+∞} where X is a metric space, Γ-converges to E if the

following conditions satisfied:

i whenever xn → x, E (x)≤ liminfn En(xn);

ii for any x ∈ X, there exists xn → x in X such that limsupn En(xn)≤ E (x).

The following is a relevant property of Γ-convergence:

Proposition 4.3.2. Given a metric space X and suppose a sequence of func-

tionals defined En defined in X Γ-converges to E . Assume that for each n, xn

is a minimizer of En, and if x is a cluster point of {xn}, then x is a minimizer

of E .

We refer the proof to [27]. In what follows

En+1 =
∫ 1

0

1
2

(u′)2 + 1
2k

(u−un)2 +u

with u(x)= un+1(x) defined in (4.3.7).

Lemma 8 (Gamma convergence of discrete functionals). For each n, EN
n+1

Γ-converges to En+1 as N →∞ or equivalently h → 0 in L2((0,1)).

Proof of Lemma 8. We follow the proof in [27].

To show (i): let uN ∈ L2((0,1)) such that liminfEN
n+1(uN ) <+∞ and therefore

there exists a subsequence uNk such that limENk
n+1(uNk ) = liminfEN

n+1(uN ).

For each k, there exists ~uNk
n+1 ∈RNk+2 such that uNk = uNk

n+1(x) as in the defini-

tion and ENk
n+1(uNk )= ENk

n+1(uNk
n+1). By the previous Remark 14, both uNk

n+1 and
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�uNk
n+1 converge to the same limit u in L2, we have

Nk−1∑
i=0

h
2

(
ui+1

n+1 −ui
n+1

h

)2

=
∫ 1

0

(
duNk

n+1

dx

)2

,

and thus

∫ 1

0
(u′)2 ≤ lim

k

∫ 1

0

(
duNk

n+1

dx

)2

≤ liminf
N

N−1∑
i=0

h
2

(
ui+1

n+1 −ui
n+1

h

)2

.

On the other hand,

h ·
N∑

i=0

(
1

2k

(
ui −ui

n

)2 +ui
)
=

∫ 1

0

1
2k

( �uNk
n+1 − ũNk

n )2 + �uNk
n+1.

Applying the uniform convergence we obtain that

∫ 1

0

1
2k

(u−un)2+u ≤ lim
k

∫ 1

0

1
2k

( �uNk
n+1−ũNk

n )2+�uNk
n+1 ≤ liminf

N
h·

N∑
i=0

(
1

2k

(
ui −ui

n

)2 +ui
)
.

These two estimates lead to En+1(u)≤ liminfEN
n+1(uN ).

It remains to prove (ii): suppose u ∈ L2((0,1)) with En+1(u) < +∞, so u ∈
H1 and hence continuous. We then let ui

n+1 = u(i/N) hence define the vector

~uN
n+1 with the piecewise linear approximation uN

n+1(x) and piecewise constant

approximation �uN
n+1(x). They converge to u uniformly by remark 14. Then it

can be shown similarly that

limsupEN
n+1(uN

n+1)≤ En+1(u).
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As a result of Lemma 8 and Proposition 4.3.2, we obtain the following corol-

lary immediately:

Corollary 8. Suppose uN
n+1 are minimizers of EN

n+1 then uN
n+1 converges to a

function un+1 in L2((0,1)) up to a subsequence as h → 0 and such un+1 is the

minimizer of En+1.

Now that u j := limN uN
j is the minimizer of the continuous functional E j for

j = 1, · · · , M; it remains to show that u(x, t)= limM→∞ uM(x, t) solves the vari-

ational inequality (4.2.3). Recalling the Rothe’s Method (Lemma 7) and com-

bining results of Lemma 8 and Lemma 7, we therefore complete the proof of

Theorem 7.

4.3.3 Discrete Optimization Scheme

We consider the details of the discrete optimization problem (4.3.4). The

corresponding Lagrangian problem is

−D2u+ u
k
+λ= un

k
−1,

λ j < 0, u j = 0 ∀ j ∈ J

λi = 0, ui ≥ 0 ∀i ∈ I,

where I and J are a disjoint partition of the grid points. The partitions divide

those points J where the values are at the constraint and those points I (“I”

for inactive constraint) with positive solution values where the corresponding

derivative of EN must be zero. Note that λ j < 0 for j ∈ J corresponds to

∂EN /∂u j > 0, a necessary and sufficient condition for optimality (the KKT
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conditions [82]). There are many techniques available to solve such quadratic

optimization problems with linear inequality constraints. We take advantage

of the simple structure of the problem and the fact that there is little change

in the index sets from one time step to the next in the following algorithm. It

is an iterative algorithm with vectors u(m), λ(m) at each iteration. The matrix

A = I/k−D2, where I is the identity.

Algorithm

Step 1 Initialize u(0) ≥ 0 (component-wise), λ(0) = min{0, un
k −1− Au(0)}. Set

m = 0. Repeat steps 2-5 until the convergence criteria in step 3 is

reached.

Step 2 Construct the index sets

J(m) = { j :λ(m), j < 0},

I(m) = { j :λ(m), j = 0}.

For any i ∈ I(m) such that u(m),i < 0 move i to J(m).

Step 3 If J(m) = J(m−1), the solution u = u(m). Stop.

Step 4 Solve for u(m+1) and λ using

Au(m+1) +λ= un

k
−1,

λ= 0 on I(m),

u(m+1) = 0 on J(m).
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This is equivalent to solving sequentially for (u(m+1),λ) that satisfy

AI I u(m+1)
I = (

un

k
−1)I ,

u(m+1)
J = 0,

λ= un

k
−1− Au(m+1).

Here vector subscripts I and J give the sub-vectors with those com-

ponents and AI I is the block of the matrix A corresponding to the I

components.

Step 5 Update λ(m+1) =min{0,λ}. Increment m.

Theorem 9. Let 0 ≤ u(0) ≤ u (component-wise). The algorithm above con-

verges in finitely many steps.

Proof. A proof is found following closely the ideas from [53] for a similar ap-

proach to the elliptic obstacle problem. Monotone behaviour in the index sets

I(m) is shown and since N is finite, the algorithm converges in finite steps.

Use is made of the properties that the sub-matrix A−1
I I has positive entries

(AI I is monotone) and AIJ has non-positive entries (values zero or −1/h2) for

any index sets I and J.

Remark 15. While the proof of iteration convergence above is limited to start-

ing conditions 0≤ u(0) ≤ u, we implement the method with u(0) = un and start-

ing index sets from the converged iterations at time step n. This initialization

falls out of the scope of the analysis but works well (no failures, few iterations)

in practice.
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Remark 16. Similar index (active set) iteration methods have been used in

capturing methods for other implicit boundary value problems. Two of these

are discussed in Section 4.5. A general theory for the convergence of these

iteration strategies is not known, but they can perform well in practice.

4.4 Additional Results

4.4.1 Final state decay

Consider the 1D case. Under sufficient regularity assumptions, uxx = 1 at

the free boundary. If ut ≤ 0 (uxx ≤ 1) for all x at some time t∗, then by the

maximum principle for uxx (which formally obeys the heat equation) we have

ut ≤ 0 for all x and all t > t∗. Thus we expect that the solution will decay

uniformly after some time. We show a related result for the implicit time

step, spatially continuous formulation of Section 4.2.4.

We assume um ≤ um−1 (pointwise) for any m = 1,2, · · ·n as an induction

hypothesis. Consider

L (un+1 −un) :=−∆(un+1 −un)+ un+1 −un

k
=

(un

k
−1

)
χ{un+1>0} −

(un−1

k
−1

)
χ{un>0}

=un −un−1

k
·χ{un+1>0,un>0} +

(un

k
−1

)
·χ{un+1>0,un=0} −

(un−1

k
−1

)
χ{un+1=0,un>0}.

Note that
un −un−1

k
·χ{un+1>0,un>0} ≤ 0

by induction and

(un

k
−1

)
·χ{un+1>0,un=0} =−χ{un+1>0,un=0} ≤ 0,
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4.4. Additional Results

also note in {un+1 = 0,un > 0}, one automatically has un+1 ≤ un. Rewrite

w = un+1 −un and we then get

−∆w+ w
k
= un −un−1

k
·χ{un+1>0,un>0} −χ{un+1>0,un=0} −

(un−1

k
−1

)
χ{un+1=0,un>0}

Suppose the w achieves maximum value at x0 in the interior of Ω (Hopf ’s

Lemma guarantees such x0 doesn’t locate at the boundary) such that w(x0)>
0, then ∇w(x0) = 0 and ∆w(x0) < 0; this leads to −∆w+ w

k > 0 at x0, which

contradicts to −∆w+ w
k < 0 in {w > 0}. We can conclude that w ≤ 0 in Ω, giving

un+1 ≤ un.

Remark 17. We conjecture that there is a generic form of solutions in the end

state in the limit as a connected set of u > 0 disappears. Simulations such as

that shown in Figure 4.2 suggest that the end state in 2D tends to a circular

shape.

4.4.2 Stable traveling wave solution

Little is known of the regularity of interfaces in higher dimensions. We

conjecture that they will be smooth away from topological changes, with a

statement similar to the 1D case (Conjecture 4.2.1). To give some indication

of the regularity of a receding front in 2D, we show the linear stability of a

planar front. We consider a 1D traveling wave solution in the form of f (ξ) =
u(x− ct) for some negative c:


f ′′+ c f ′ = 1, ξ ∈ (−∞,0)

f (0)= f ′(0)= 0 free boundary condition
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4.5. Other Implicit Free Boundary Value Problems

By direct computation, we find that

f (ξ)= ξ

c
− 1

c2 + e−cξ

c2 . (4.4.1)

To consider its linear stability, we take the Anstaz Φ= f (ξ)+ eλt+iµyv(ξ) in

Φt =Φξξ+ cΦξ+Φyy −1

where µ ∈R and λ ∈C. This leads to

(λ+µ2)v = v′′+ cv′ (4.4.2)

with the linearized condition v(0)= 0 and v′(0) determining the linear change

in interface position. To have appropriate decay in v as ξ→−∞ we must have

two positive roots r of the auxiliary equation

r2 + cr− (λ+µ2)= 0

which can only occur if Re(λ) < −µ2. Thus we have stability of the front to

perturbations with parabolic decay.

4.5 Other Implicit Free Boundary Value Problems

4.5.1 A biharmonic problem

The OD problem is the simplest second order implicit free boundary prob-

lem. The simplest fourth order problem is the following biharmonic problem
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4.5. Other Implicit Free Boundary Value Problems

Figure 4.4: Two computations at three times each for the biharmonic free
boundary value problem with physical boundary conditions u(0) = 1, uxx = 0
approaching the analytic steady state solution shown in dark blue.

shown in 1D for u(x, t):

ut =−uxxxx −1

with conditions u = 0, ux = 0, and uxxx = 0 at the implicitly defined free

boundary x = s(t) and u ≡ 0 for x > s(t). This can be derived from the scaled,

linear, viscoelastic motion of a beam above a flat, rigid surface. Note that

another boundary value problem occurs if uxxx = 0 is replaced by uxx = 0.

However, the third order condition is correct for this application [78] and also

gives the gradient flow structure described below.

We consider the time discretization of this problem as in Section 4.2.4 and
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4.5. Other Implicit Free Boundary Value Problems

see that it is a discrete L2 gradient flow on the energy

E n :=
∫

1
2
|∆un|2 +un

with un ∈ H2+. We form a fully discrete scheme as was done in Section 4.3.2

and compute the discrete optimization at each time step using index iter-

ations as described in Section 4.3.3. The convergence of the method follows

the same ideas as presented for the OD problem. Some computational results

are shown in Figure 4.4.

Remark 18. There has been considerable mathematical interest in the elliptic

obstacle problem as discussed in the introduction. This is the steady state of

the OD problem with nonzero physical boundary conditions. The steady state

of the biharmonic problem (in higher dimensions) described in this section

would also be mathematically interesting. Its analysis would be complicated

by the lack of a maximum principle.

4.5.2 Vector problems

The free boundary in complex fluids with yield stress is of implicit type

and is well studied [42]. Numerical approaches include regularization (in-

creased viscosity in the unyielded region) and an Augmented Lagrangian ap-

proach to the non-smooth optimization problem that comes from a discretiza-

tion of a variational inequality formulation. The literature on this problem is

focussed on capturing the unyielded region rather than considering the free

boundary directly.

Implicit free boundaries in porous media flow can occur when phase change
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4.5. Other Implicit Free Boundary Value Problems

is present. Boundaries between dry and two-phase (where there is liquid and

vapour present) regions were studied in [9, 45]. The work in [9] had impor-

tant implications to simulations of water management in fuel cells. However,

many theoretical questions were left unanswered and this became the moti-

vation of the corresponding author to attempt the current work.

We present below a class of implicit free boundary value problems that

generalizes the OD problem. The problems are presented in 1D with a single

free boundary at x = s(t) with ul(x, t) having n components for x < s(t) and

ur(x, t) having m components for x > s(t). Near the interface we take

u∗
t = D∗u∗

xx +a∗

for ∗ ∈ {l, r}, D∗ positive diagonal matrices, and a∗ constant vectors. At the

boundary, we take

B



ul

ul
x

ur

ur
x


= 0

where B is an (m+ n+1)× (2m+2n) matrix of full rank. This class can be

reached from a wider class by taking affine combinations of solution compo-

nents and x, and as an approximation of some nonlinear problems. A problem

statement can be made by adding far field conditions, n on the left and m on

the right. With these far field conditions we label the class as n+m implicit

free boundary value problems. The OD problem is the only well defined ex-

ample of the 1+0 class. The model in [9] is of class 2+2, although one of the
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4.6. Proof of Theorem 4.2.3

components has degenerate diffusion at the free boundary.

There are several open questions related to problems of this type moti-

vated by the current work on the OD problem. Which lead to well defined

problems? (this could depend on the sign of entries of a as discussed in

Remark 10). Which have gradient flow or variational inequality structure?

Which allow a capturing formulation with index iteration similar to that de-

scribed in Section 4.3.3? (true of the model in [9]).

4.6 Proof of Theorem 4.2.3

With the help of the minimality of u, we consider a competing function

u+εφ where φ is an arbitrary smooth function that is compactly supported

inside Ω. By the definition of Ẽ[u], it follows that

Ẽ[u+εφ]≥ Ẽ[u],

that is

ε

∫
∇u ·∇φ+ ε2

2

∫
|∇φ|2 + ε

k

∫
uφ+ ε2

2k

∫
φ2 ≥−

∫
(1− un

k
)[(u+εφ)+−u].

(4.6.1)

Note that

∫
(1− un

k
)[(u+εφ)+−u]= ε

∫
{u+εφ≥0}

(1− un

k
)φ−

∫
{u+εφ<0}

(1− un

k
)u,
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ignoring the O(ε2) terms in (4.6.1), we have

ε

∫
∇u ·∇φ+ ε

k

∫
uφ−ε

∫
{u+εφ≥0}

(1− un

k
)−φ+

∫
{u+εφ<0}

(1− un

k
)−u

≥−ε
∫

{u+εφ≥0}
(1− un

k
)+φ+

∫
{u+εφ<0}

(1− un

k
)+u.

(4.6.2)

In fact we have

0≤
∫

{u+εφ<0}
(1− un

k
)±u <−ε

∫
{u+εφ<0}

(1− un

k
)±φ,

hence (4.6.2) turns out to be

∫
∇u ·∇φ+ 1

k

∫
uφ−

∫
{u+εφ≥0}

(1− un

k
)−φ−

∫
{u+εφ<0}

(1− un

k
)−φ≥−

∫
{u+εφ≥0}

(1− un

k
)+φ.

Moreover, we also recall that u ≥ 0, then in L1 sense as ε→ 0,


χ{u+εφ≥0} → χAφ∪{u>0}

χ{u+εφ<0} → χ{u=0}∩{φ<0},

where Aφ := {u = 0}∩ {φ≥ 0}. Clearly, Aφ and {u > 0} are disjoint. This leads

to

∫
∇u ·∇φ+ 1

k

∫
uφ−

∫
χAφ∪{u>0}(1−

un

k
)−φ−

∫
χ{u=0}∩{φ<0}(1−

un

k
)−φ

≥−
∫
χAφ∪{u>0}(1−

un

k
)+φ,
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or equivalently,

∫
∇u ·∇φ+ 1

k

∫
uφ+

∫
χAφ∪{u>0}(1−

un

k
)φ−

∫
χ{u=0}∩{φ<0}(1−

un

k
)−φ≥ 0.

(4.6.3)

Define a distribution

T(φ) :=
∫

∇u ·∇φ+ 1
k

∫
uφ+

∫
χ{u>0}(1−

un

k
)φ,

then by (4.6.3),

T(φ)≥−
∫

Aφ

(1− un

k
)φ+

∫
{u=0}∩{φ<0}

(1− un

k
)−φ.

Since φ is arbitrary, we may replace it with −φ and as a result,


T(φ)≥−

∫
Aφ

(1− un

k
)φ+

∫
{u=0}∩{φ<0}

(1− un

k
)−φ

T(φ)≤−
∫

{u=0}∩{φ≤0}
(1− un

k
)φ+

∫
{u=0}∩{φ>0}

(1− un

k
)−φ.

(4.6.4)

Therefore, |T(φ)| ≤ C‖φ‖∞ for some positive constant C, thus by a density

argument we derive that T is a radon measure, i.e. there exists a density

function ρ(x) such that

T(φ)=
∫
Ω
ρφ dx.

However, by (4.6.4), we get ρ = 0 a.e. in {u > 0}; moreover, by definition of T

we get ρ = 0 a.e. in {u = 0}. This shows that T(φ)= 0, or

−∆u+ 1
k

u+χ{u>0}(1−
un

k
)= 0
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4.7. Proof of Theorem 6

in the weak sense. Equivalently,

u−un ·χ{u>0}

k
=∆u−χ{u>0}.

4.7 Proof of Theorem 6

As the discussion in Section 4.2.5 above showed, u = limε→0 uε exists

pointwisely by monotonicity. It remains to show u is the solution to (4.2.3),

that is

∫ t

0

∫ 1

0
∂tu · (v−u)+

∫ t

0

∫ 1

0
u′ · (v′−u′)≥

∫ t

0

∫ 1

0
u−v; for all v ∈J , a.e. t ∈ (0,T).

We show the result in one spatial dimension, but the proof applies to 2D and

3D with minor modifications. Intuitively, suppose that f is a smooth approx-

imation, then by maximum principle |∂xuε| ≤max |u′
0(x)| for any x ∈ [0,1] and

ε> 0. Thus |∂xu| ≤max |u′
0(x)|, therefore by Dini’s Theorem, such convergence

is uniform and as a result, u ∈J because u also satisfies the boundary condi-

tion and initial condition. Once we have such uniform boundedness of ∂xuε,

∂xuε converges to ∂xu weakly and as a result,

lim
ε

∫ t

0

∫ 1

0
u′
ε · (v′−u′)=

∫ t

0

∫ 1

0
u′ · (v′−u′);

and

lim
ε

∫ t

0

∫ 1

0
− fε(uε)·(v−u)=−

∫ t

0

∫ 1

0
χ{u>0}·(v−u)=−

∫ t

0

∫ 1

0
v−u+

∫ t

0

∫ 1

0
χ{u=0}·v.

110



4.7. Proof of Theorem 6

Indeed we have weak convergence of ∂tuε thanks to the equation:

lim
ε

∫ t

0

∫ 1

0
∂tuε · (v−u)= lim

ε

∫ t

0

∫ 1

0
− f (uε) · (v−u)−u′

ε · (v′−u′).

Since uε converges to u pointwisely and strongly in L2((0,T);L2((0,1))), then

up to a subsequence

lim
ε

∫ t

0

∫ 1

0
∂tuε · (v−u)=

∫ t

0

∫ 1

0
∂tu · (v−u).

Note that v ≥ 0,

−
∫ t

0

∫ 1

0
χ{u>0} · (v−u)≥−

∫ t

0

∫ 1

0
v−u.

therefore

∫ t

0

∫ 1

0
∂tu · (v−u)+

∫ t

0

∫ 1

0
u′ · (v′−u′)≥

∫ t

0

∫ 1

0
u−v; for all v ∈J , a.e. t ∈ (0,T).

Indeed, we only require the H1 uniform boundedness of uε. To see this with-

out using smooth f (uε) we write down uε in the mild form:

uε(t)= et∆u0 +
∫ t

0
e(t−s)∆( fε(uε)) ds ,

where et∆ represents convolution with heat kernel. As a result, for any first

order differential operator D we have

Duε = Det∆u0 +
∫ t

0
De(t−s)∆( fε(uε)) ds
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and hence

‖Duε‖2 ≤ ‖Det∆u0‖2 +
∫ t

0
‖De(t−s)∆ f (uε)‖2 ds.

Note that et∆u0 solves the standard heat equation with initial data u0, we

have

‖Det∆u0‖2 = ‖et∆Du0‖2 . ‖Du0‖2 . 1,

for any t ∈ (0,T). On the other hand,

‖De(t−s)∆ f (uε)‖2 . ‖De(t−s)∆ f (uε)‖∞ = |K ∗ f (uε)| ,

where K is the kernel corresponding to De(t−s)∆. Since | f | ≤ 1,

|K ∗ f (uε)| ≤ ‖K‖2 · ‖ f (uε)‖2

. ‖K‖2.

We see that from Fourier side

‖K‖2
2 .

∑
k∈Z

|k|2e−2(t−s)|k|2

= ∑
|k|≥1

|k|2e−2(t−s)|k|2

.
∫ ∞

1
e−2(t−s)r2

r2 dr .

Observe that

∫ ∞

1
e−2(t−s)r2

r2 dr =
p

2π[1−erf(
p

2(t− s))]+4
p

t− se−2(t−s)

16(t− s)3/2

.
1−erf(

p
2(t− s))

(t− s)3/2 + e−2(t−s)

t− s
,
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where erf(x)= 2p
π

∫ x
0 e−t2

dt, the Gauss error function. Therefore,

‖Deγ∆ f (uε)‖2 .

(
1−erf(

p
2(t− s))

)1/2

(t− s)3/4 + e−(t−s)

(t− s)1/2 .

Now we would assume t ≥ 1, as the other case t < 1 is easier. Let γ= t− s, we

split the following integral into 2 parts:

∫ t

0
‖Deγ∆ f (uε)‖2 dγ=

∫ 1

0
‖Deγ∆ f (uε)‖2 dγ+

∫ t

1
‖Deγ∆ f (uε)‖2 dγ.

(i) γ> 1: Then we have (
1−erf(

√
2γ)

)1/2

γ3/4 .
e−γ

γ5/4 ,

thus ∫ t

1
‖Deγ∆ f (uε)‖2 dγ.

∫ t

1

e−γ

γ3/4 + e−γ

γ1/2 dγ

.
∫ t

1

e−γ

γ1/2 dγ

.
∫ ∞

1

e−γ

γ1/2 dγ

. 1 .

(ii) γ≤ 1: We use another estimate for ‖K ∗ f (uε)‖2. We compute from the
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Fourier side:

‖K ∗ f (uε)‖2
2 =

∑
|k|≥1

|k|2e−2γ|k|2 |�f (uε)(k)|2

≤max
|k|≥1

{
|k|2e−2γ|k|2

}
· ∑
|k|≥1

|�f (uε)(k)|2

.max
|k|≥1

{
|k|2e−2γ|k|2

}
· ‖ f (uε)‖2

2

.max
|k|≥1

{
|k|2e−2γ|k|2

}
.

Define g(x)= x2e−2γx2
, where x ≥ 0. Then,

g′(x)= xe−2γx2 (
1−2γx2)

,

this shows the maximum achieves at x = 1p
2γ

and hence

g(x)≤ g(
1√
2γ

)≤ 1
γ

thus

‖Deγ∆ f (uε)‖2 .
1p
γ

,

As a result,

∫ 1

0
‖Deγ∆ f (uε)‖2 dγ.

∫ 1

0

1p
γ

dγ · ‖ f (uε)‖2 . 1 .

As a result,

‖Duε‖2 . 1,

for any t ∈ (0,T) and the bound is independent of ε.
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4.8 Another Proof of the Regularization Result

We recall the variational inequality setting (4.2.3), that is to solve u ∈ H1+

∫ t

0
〈∂tu−∆u+1,v−u〉 ≥ 0, ∀ v ∈J .

As in [49], it then has an equivalent formulation, that is to solve u(t) and

λ∗(t): 
∂tu−∆u+1=−λ∗(t)≥ 0

u ≥ 0, 〈u(t),λ∗(t)〉 = 0, ∀ t > 0.
(4.8.1)

To approach this, we introduce a regularized approximation family: we aim

to find uc for any c > 0 such that the following holds weakly:

∂tuc −∆uc +1+min
(
0,−1+ cuc)= 0.

By defining λc =min(0,−1+ cuc), we can rewrite the above scheme as

∂tuc −∆uc +1+λc = 0.

It is typical to write the regularization term in this way in some literature,

but the approach is the same as the regularization in Section 4.2.5 with c =
1/ε. We then discretize it in time: for any φ ∈ H1, the following holds

〈uc
n+1 −uc

n

k
,φ

〉
+〈∇uc

n+1,∇φ〉+〈1,φ〉+〈
min(0,−1+ cuc

n+1),φ
〉= 0, (4.8.2)

where uc
0 is chosen to be u0. We write un instead of uc

n for simplicity. Note

that the operator A(u) := u
k −∆u+min(0,−1+cu) is coercive and monotone. As
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a result, there exists a unique solution un+1 ∈ H1 for sufficiently small k > 0

independent of c > 0. To show un+1 ∈ H1+, we prove by induction. Assuming

un ∈ H1+, we test the (4.8.2) with (un+1)−. Therefore we derive that

1
k
〈un+1, (un+1)−〉+〈∇un+1,∇(un+1)−〉+〈1,(un+1)−〉+〈min(0,−1+ cun+1), (un+1)−〉

=1
k
〈un, (un+1)−〉 ≤ 0.

We observe that 〈∇un+1,∇(un+1)−〉 = 〈∇(un+1)−,∇(un+1)−〉 ≥ 0. Moreover, 〈1,(un+1)−〉+
〈min(0,−1+ cun+1), (un+1)−〉 = c〈(un+1)−, (un+1)−〉 ≥ 0. We thus obtain that

〈un+1, (un+1)−〉 ≤ 0 and hence un+1 ∈ H1+. We then define

uc
M(x, t)= un + t−nk

k
(un+1 −un), for t ∈ [nk, (n+1)k),

where M = T/k. By the same argument in Lemma 7, we have uc
M converges

to function uc in L2(0,T;H1) as M → ∞ up to a subsequence. In fact, it is

easy to see that uc is the solution to (4.8.2). On the other hand, we show that

uc converges to u∗ as c →∞.

Theorem 10 (Monotonicity). Let uc
n+1 and uc be defined as above. If 0 < c ≤

b, then uc
n+1 ≥ ub

n+1 for all n = 0,1,2, · · · . Therefore uc(t) ≥ ub(t) as a direct

application.

Proof. The proof is given by induction. Suppose uc
n ≥ ub

n and for each n define

λc
n by

λc
n+1 =min(0,−1+ cuc

n+1).
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Then the proof is similar to the one showing uc
n+1 ≥ 0, we have that

1
k
〈uc

n+1 −ub
n+1, (uc

n+1 −ub
n+1)−〉+

〈
∇(uc

n+1 −ub
n+1),∇(uc

n+1 −ub
n+1)−

〉
+

〈
λc

n+1 −λb
n+1, (uc

n+1 −ub
n+1)−

〉
= 1

k
〈un

c −ub
n, (uc

n+1 −ub
n+1)−〉 ≤ 0.

Note that cuc
n+1−bub

n+1 ≤ cuc
n+1−cub

n+1 for c ≤ b and hence 〈λc
n+1−λb

n+1, (uc
n+1−

ub
n+1)−〉 ≥ 0. We thus obtain that uc

n+1 ≥ ub.

As a corollary of the monotonicity, we obtain the existence of u(t) and it

solves (4.8.1). Uniqueness can be proved similarly as in [49].
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Chapter 5

Non-uniqueness of the

stationary surface

quasi-geostrophic equation

In this chapter, we show the existence of nontrivial stationary weak so-

lutions to the surface quasi-geostrophic equations on the two dimensional

periodic torus.

5.1 Introduction

Consider the two dimensional dissipative surface quasi-geostrophic (SQG)

equations for θ = θ(x, t) :T2 × [0,∞)→R:



∂tθ+u ·∇θ =−νΛγθ, in T2 × (0,∞);

u =∇⊥Λ−1θ = (−∂2Λ
−1θ,∂1Λ

−1θ)= (−R2θ,R1θ);

θ|t=0 = θ0,

(SQG)

where ν ≥ 0 is the viscosity, 0 < γ ≤ 2 and T2 = [−π,π]2 is the periodic torus.

Here the unknown scalar function θ denotes the potential temperature in the
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context of geophysical fluid dynamics [44, 68]. This transport equation mod-

els the evolution of the temperature in a fast rotating stratified fluid and can

be derived from a more complete 3D system via Boussinesq approximation

[68]. In equation (SQG), R = (R1,R2) is the pair of Riesz transforms and

∇⊥ = (−∂2,∂1). For s ≥ 0 the fractional Laplacian Λs = (−∆)
s
2 is defined by

(under suitable assumptions on θ) Λ̂sθ(k) = |k|sθ̂(k) for k ∈ Z2. For negative

s the formula is restricted to nonzero wave numbers. We consider solutions

with zero mean, i.e.
∫
T2 θ(x, t) dx = 0, which is invariant under the dynamics

thanks to incompressibility. The purpose of this work is to construct station-

ary weak solutions to (SQG). By using integration by parts, one way to define

stationary weak solutions to (SQG) is to drop the ∂tθ term and require

−
∫
T2
θu ·∇φ dx =−ν

∫
T2
θΛγφ dx, ∀φ ∈ C∞(T2). (5.1.1)

However, this definition requires the strong assumption θ ∈ L2 which did not

take into account of the incompressibility condition. On the other hand, it is

possible to define stationary weak solutions using the mere Ḣ− 1
2 -regularity.

The starting point is to note that the operators R j, j = 1,2 are skew-symmetric,

i.e. 〈R j f , g〉 = −〈 f ,R j g〉 where 〈,〉 denotes the usual L2 (real) inner product.

Using this one can derive for θ ∈ L2 (below [A,B] = AB −BA is the usual

commutator):

〈θR jθ,φ〉 =−1
2
〈θ, [R j,φ]θ〉, ∀φ ∈ C∞(T2).
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Since ‖[R j,φ]θ‖
Ḣ

1
2
. ‖φ‖H3‖θ‖

Ḣ− 1
2

(see Proposition 5.5.1), it is then not dif-

ficult to see that Ḣ− 1
2 -regularity suffices for defining a stationary weak solu-

tion.

Definition 5.1.1. We say θ ∈ Ḣ− 1
2 (T2) with zero mean is a stationary weak

solution to (SQG) if

1
2

∫
T2

(Λ− 1
2 θ) ·Λ 1

2 ([R⊥,∇ψ]θ)dx =−ν
∫
T2

(Λ− 1
2 θ)Λγ+ 1

2ψdx, ∀ψ ∈ C∞(T2),

where [R⊥,∇ψ]θ =−[R2,∂1ψ]θ+ [R1,∂2ψ]θ.

In the non-steady case, weak solutions in L2
t,locḢ

− 1
2

x can be defined sim-

ilarly by employing time-dependent test functions. Resnick [70] proved the

global existence of a weak solution to (SQG) for ν ≥ 0 and 0 < γ ≤ 2 in L∞
t L2

x

for any initial data θ0 ∈ L2
x(T2). Marchand [60] obtained a global weak solu-

tion in L∞
t H

− 1
2

x for θ0 ∈ Ḣ
− 1

2
x (R2) or L∞

t Lp
x for θ0 ∈ Lp

x (R2), p ≥ 4
3 , when ν > 0

and 0 < γ ≤ 2. Note that in Marchand’s result, the inviscid case ν = 0 re-

quires p > 4/3 since the embedding L
4
3 ,→ Ḣ− 1

2 is not compact, whereas for

the diffusive case one has extra L2
t Ḣ

γ

2− 1
2 conservation by construction.

For non-stationary smooth solutions with zero mean, one has conserva-

tion (ν = 0) or dissipation (ν > 0) of Ḣ− 1
2 -Hamiltonian. Indeed for ν = 0

by using the identity (below P<J is a smooth frequency projection to {|k| ≤
constant ·2J})

1
2

d
dt

‖Λ− 1
2 P<Jθ‖2

2 =−
∫

P<J(θR⊥θ) ·P<JRθdx,

one can prove the conservation of ‖Λ− 1
2 θ‖2

2 under the assumption θ ∈ L3
t,x (see
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also [48]). We also mention that for the non-dissipative case in the positive

direction uniqueness of SQG patches with moving boundary satisfying the

arc-chord condition was obtained in recent [24].

In this chapter, we prove the non-uniqueness of stationary weak solutions

to (SQG).

Theorem 5.1.2. For any ν ≥ 0, γ ∈ (0, 3
2 ), and 1

2 ≤ α < 1
2 +min(1

6 , 3
2 −γ), there

exist infinitely many stationary weak solutions θ to (SQG) with zero mean

satisfying Λ−1θ ∈ Cα(T2).

Remark 5.1.3. The restriction γ< 3
2 in Theorem 5.1.2 can be seen by a crude

heuristic using the plane wave ansatz localized around frequency λ. The dom-

ination of nonlinearity versus dissipation yields ‖Λ−1θ‖∞ Àλγ−2. The Hölder

regularity of Λ−1θ yields ‖Λ−1θ‖∞ .λ−α where α> 1
2 . Thus γ≤ 2−α< 3

2 .

One can apply the convex integration scheme [29, 30] to general active

scalar models such as ∂tθ+∇· (θu)= 0 where û = m(k)θ̂(k) and m(k) is a gen-

eral Fourier multiplier. By using a plane wave ansatz θ = akeiλk·x +a∗
ke−iλk·x

with |k| = 1 and λ À 1, one can extract the non-oscillatory part of ∇ · (θu)

as ∇ · (|ak|2(m(−λk)+m(λk))) which vanishes if m is odd. This is known as

the odd multiplier obstruction [28, 48, 77]. Previously the non-uniqueness

results were established only for active scalar equations with non-odd multi-

pliers [48, 77]. In [10] this issue was resolved for the time-dependent SQG,

by using the momentum equation1 for v = Λ−1u and rewriting the nonlin-

earity u · ∇v− (∇v)T · u as the sum of a divergence of a 2-tensor, and a gra-

dient of a scalar function. In particular, weak solutions Λ−1θ ∈ Cσ
t Cβ

x , 1
2 <

1This approach originates from an exposition in [83], which dates back to Resnick’s thesis
[70].
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β < 4
5 , σ < β

2−β , with any prescribed energy ‖Λ− 1
2 θ(t)‖2 = e(t) ∈ C∞

c were con-

structed when ν≥ 0,0< γ< 2−β. Note that the restriction β−1< 1−γ accords

with the critical ‖θ‖L∞
t Ċ1−γ norm. Recently Isett and Ma [47] give another di-

rect approach at the level of θ. For some more recent application of convex

integration to other fluid models, see [20, 23, 58] and the references therein.

The modest goal of this chapter is to introduce another approach to over-

come the odd multiplier obstruction by working directly with the scalar func-

tion f = Λ−1θ and developing a concise framework tailor-made for similar

problems. From our analysis it appears that the indirect momentum for-

mulation emphasized in [10] is not needed and one can settle the problem

directly using the special structure of SQG. Returning to the plane wave

ansatz, a decisive step for the SQG nonlinearity is to identify the nontrivial

non-oscillatory part after removing the ∇⊥-direction. More precisely, consider

f =∑
l al(x)cos(λl · x) where |l| = 1 and λÀ 1, then (see Lemma 5.2.1)

Λ f =∑
l

(
λ f + (l ·∇)al sin(λl · x)+ (T(1)

λl al)cos(λl · x)+ (T(2)
λl al)sin(λl · x)

)
.

By a short computation we arrive at

Λ f∇⊥ f
◦≈ −1

4
λ

∑
l

(l ·∇)(a2
l )l⊥+error terms,

where the notation
◦≈ is defined in (5.1.2). We then use a novel algebraic

lemma (Lemma 5.2.2) to obtain nontrivial projection in the gradient direc-

tion. One should note that in the above computation, the leading O(λ2) term

vanishes which completely accords with the odd multiplier obstruction prob-
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lem mentioned earlier. What is remarkable is that in the next O(λ) term

there is nontrivial non-oscillatory contribution coming from the commutator

piece [Λ,al]cosλx. This seems to be the crucial technical difference between

SQG and Euler.

Our next result is about the weak rigidity of solutions in the time-dependent

case. It improves Theorem 1.3 of [48] all the way from Lp
t L2

x, p > 2 to L2
t Ḣ− 1

2+.

The proof can be found in Section 5.5.

Theorem 5.1.4 (Weak rigidity). Let ν≥ 0 and 0 < γ≤ 2. Suppose f = limn θn

is a weak limit of solutions (SQG) in L2
t Ḣs for s >−1

2 . Then f must also be a

weak solution.

Notation in this chapter

For a real number X , we use X+ for X +ε when ε> 0 is sufficiently small.

For any two vector functions v and w, we denote

v
◦≈ w, if v = w+∇⊥p (5.1.2)

holds for some smooth scalar function p. The mean of f on T2 is denoted by

f = 1
(2π)2

∫
T2 f (x)dx. We define the function space C∞

0 (T2) as

C∞
0 (T2)=

{
f ∈ C∞(T2) : f = 0

}
. (5.1.3)

For any 1 ≤ p ≤∞, we denote ‖ f ‖p = ‖ f ‖Lp(T2) as the usual Lebesgue norm.

For f on T2, we follow the Fourier transform convention f̂ (k)= 1
(2π)2

∫
T2 f (x)e−ix·kdx

and f (x) = ∑
k∈Z2 f̂ (k)eik·x. The convolution operation ∗ is defined by ( f ∗
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5.2. Construction of the perturbation

g)(x) = 1
(2π)2

∫
T2 f (x− y)g(y)d y, which implies �f ∗ g(k) = f̂ (k) ĝ(k) and f̂ g(k) =∑

l∈Z2 f̂ (l) ĝ(k− l).

For s ∈ R, the homogeneous Ḣs-Sobolev norm is defined by ‖ f ‖Ḣs(T2) =(∑
06=k∈Z2 |k|2s| f̂ (k)|2) 1

2 .

Parameters

Throughout this chapter, we fix parameters as follows. ν ≥ 0, 0 < γ < 3
2 ,

0<β<min{1
3 ,3−2γ},

λn =
⌈
λbn

0

⌉
, rn =λ−β

n , µn+1 = (λn+1λn)
1
2 , n ∈N∪ {0}, (5.1.4)

where d·e denotes the ceiling function. Here λ0 ∈N, b = 1+, will be chosen in

Proposition 5.3.1. The Hölder exponent in Theorem 5.1.2 is α= 1
2 +

β
2b −ε0 > 1

2

by taking first b−1 sufficiently small and then ε0 sufficiently small. See also

Section 5.6 for more explicit dependence of constants.

5.2 Construction of the perturbation

For f = Λ−1θ the steady-state SQG equation is ∇ · (Λ f∇⊥ f
) = −νΛγ+1 f

which follows from Λ f∇⊥ f
◦≈ νΛγ−1∇ f . The idea is to find approximate solu-

tions ( f≤n, qn) ∈ C∞
0 (T2)×C∞

0 (T2) solving the relaxed equation

Λ f≤n∇⊥ f≤n
◦≈ νΛγ−1∇ f≤n +∇qn, (5.2.1)

such that qn → 0 in the limit. This will be done inductively.
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5.2. Construction of the perturbation

Writing f≤n+1 = f≤n + fn+1, we first show that for given qn one can solve

Λ fn+1∇⊥ fn+1 +∇qn
◦≈ small error, (5.2.2)

where the left hand side is the main piece in

(Λ fn+1∇⊥ fn+1 +∇qn)+Λ f≤n∇⊥ fn+1 +Λ fn+1∇⊥ f≤n
◦≈ ∇qn+1 +νΛγ−1∇ fn+1.

(5.2.3)

5.2.1 Derivation of the leading order part

Consider the ansatz ( f = fn+1)

f (x)=∑
l

al(x)cos(λl · x), (5.2.4)

where the frequency of al is much smaller than λ and the summation over l

is finite.

Lemma 5.2.1 (Leibniz). Let |l| = 1, λl ∈Z2, and g(x)= a(x)cos(λl · x). Then,

Λg =λg+ (l ·∇a)sin(λl · x)+ (T(1)
λl a)cos(λl · x)+ (T(2)

λl a)sin(λl · x),

where

�T(1)
λl a(k)=

( |λl+k|+ |λl−k|
2

−λ
)

â(k), �T(2)
λl a(k)= i

( |λl+k|− |λl−k|
2

− l ·k
)

â(k).

(5.2.5)

Proof. We begin with the following simple fact: if �Tm g(k) = m(k) ĝ(k), then

125



5.2. Construction of the perturbation

∀n ∈ Z2, Tm(g(x)ein·x) = (Tm1 g)ein·x, where m1(k) = m(k + n). Noting that

Λ̂g(k)= |k| ĝ(k), we have

Λ(a(x)cos(λl·x))= 1
2
Λ(a(x)eiλl·x)+1

2
Λ(a(x)e−iλl·x)= 1

2
Λm1(a)eiλl·x+1

2
Λm2(a)e−iλl·x,

where �Λm1 a(k) = |k+λl| and �Λm2 a(k) = |k−λl|. The desired identity then

follows by rearranging terms.

By using Lemma 5.2.1, we have

Λ f∇⊥ f
◦≈ main + non-oscillatory error + oscillatory error , (5.2.6)

126



5.2. Construction of the perturbation

where (below l⊥ = (−l2, l1)ᵀ for l = (l1, l2)ᵀ)

main =−1
4
λ

∑
l

(l ·∇)(a2
l )l⊥,

non-oscillatory error =−1
2
λ

∑
l

(T(2)
λl al)al l⊥+ 1

2

∑
l

(T(1)
λl al)∇⊥al ,

oscillatory error = 1
2

∑
l

(l ·∇al +T(2)
λl al)(λal l⊥ cos(2λl · x)+∇⊥al sin(2λl · x))

(osc1)

− 1
2

∑
l

(T(1)
λl al)(λal l⊥ sin(2λl · x)−∇⊥al cos(2λl · x))

(osc2)

−λ ∑
l 6=l′

(l ·∇al +T(2)
λl al)al′(l′)⊥ sin(λl · x)sin(λl′ · x)

(osc3)

+ ∑
l 6=l′

(l ·∇al +T(2)
λl al)∇⊥al′ sin(λl · x)cos(λl′ · x) (osc4)

−λ ∑
l 6=l′

(T(1)
λl al)al′(l′)⊥ cos(λl · x)sin(λl′ · x) (osc5)

+ ∑
l 6=l′

(T(1)
λl al)∇⊥al′ cos(λl · x)cos(λl′ · x). (osc6)

Note that the leading-order term λ f∇⊥ f inΛ f∇⊥ f vanishes since ∇⊥ (
λ
2 f 2) ◦≈

0.

5.2.2 Matching

We begin with a simple yet powerful lemma.

Lemma 5.2.2 (Algebraic Lemma). For a given Q ∈ C∞
0 (T2), we have the de-
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5.2. Construction of the perturbation

composition identity

2∑
j=1

l⊥j (l j ·∇)(Ro
jQ)

◦≈ ∇Q,

where l1 = (3
5 , 4

5 )ᵀ, l2 = (1,0)ᵀ, and the Riesz-type transforms Ro
j , j = 1,2 are

defined by

R̂o
1(k1,k2)= 25(k2

2 −k2
1)

12|k|2 , R̂o
2(k1,k2)= 7(k2

2 −k2
1)

12|k|2 + 4k1k2

|k|2 . (5.2.7)

Proof. This follows from the identity
∑2

j=1(l⊥j ·∇)(l j ·∇)(Ro
jQ)=∆Q.

Proposition 5.2.3. Set l j and Ro
j , j = 1,2 as in Lemma 5.2.2. For given

qn ∈ C∞
0 (T2), choose C0 ≥ 2 to be a fixed constant and

aperfect
j,n+1 = 2

√
rn

5λn+1

√
C0 +Ro

j
qn

rn
, (5.2.8)

where (λn+1, rn) are taken as in (5.1.4). Then

−1
4
· (5λn+1) ·

( 2∑
j=1

l⊥j (l j ·∇)(aperfect
j,n+1 )2

)
+∇qn

◦≈ 0. (5.2.9)

Proof. The proof follows from applying Lemma 5.2.2 to Q = qn.

We now choose

fn+1(x)=
2∑

j=1
a j,n+1(x)cos(5λn+1l j · x), a j,n+1 = P≤µn+1 aperfect

j,n+1 , (5.2.10)

where áP≤µn+1 g(k) =ψ( k
µn+1

) ĝ(k), and ψ ∈ C∞
c (R2) satisfies ψ(k) = 0 for |k| ≥ 1,

and ψ(k) = 1 for |k| ≤ 1
2 . We have Λ fn+1∇⊥ fn+1 +∇qn

◦≈ small error. In the
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5.3. Error estimates

next section we estimate the errors.

5.3 Error estimates

In this section we prove the following proposition which is the key in the

whole iteration procedure.

Proposition 5.3.1. Given ν≥ 0, 0 < γ< 3
2 , 0 < β< min

(1
3 ,3−2γ

)
, there exists

b0 = b0(ν,γ,β) such that for any 0 < b−1 < b0 we can find Λ0 = Λ0(ν,γ,β,b)

for which the following holds. If λ0 ≥Λ0 and ( f≤n, qn) satisfies

• the frequencies of f≤n and qn are localized to ≤ 6λn and ≤ 12λn, respec-

tively,

• ‖ f≤n‖Cα(T2) ≤ 100 and ‖qn‖X ≤ rn where

‖q‖X := ‖q‖∞+
2∑

j=1
‖Ro

j q‖∞, (5.3.1)

and Ro
j is defined in (5.2.7). Then there exists qn+1 ∈ C∞

0 (T2) solving (5.2.3)

with frequency localized to ≤ 12λn+1, fn+1 defined by (5.2.10) satisfying

‖qn+1‖X ≤ rn+1. (5.3.2)

We now explain the motivation for choosing the X -norm in (5.3.1). First

of all, q = qn represents the residual error at step n and in the Hölderian

context an ideal choice is to use ‖q‖∞ only. However, there are Riesz-type

operators Ro
j , j = 1,2 which appear somewhat inevitably in the “matching”

process (see for example Proposition 5.2.3 and especially (5.2.8)). For this
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reason it is necessary to include ‖Ro
j q‖∞ in the working X -norm. To prove

Proposition 5.3.1, we need several technical lemmas.

Lemma 5.3.2. Suppose a : T2 → R, a ∈ L∞(T2) with supp(â) ⊂ {|k| ≤ µ} and

µ ≥ 10. Let m ∈ C∞(R2 \ {0}) be a homogeneous function of degree 0 and R

is the Fourier multiplier defined by R̂ f (k)= m(k) f̂ (k),then we have ‖Ra‖∞ .

‖a‖∞ logµ. Here the implied constant depends on m.

Proof. With no loss we can assume a = 0. Using the Littlewood-Paley decom-

position [80], splitting into low and high frequencies and choosing integer

J ∼ 2logµ, we obtain

‖Ra‖∞ . (J+3)‖a‖∞+2−J‖∇a‖∞

. (J+3+2−Jµ)‖a‖∞ . ‖a‖∞ logµ.

We now state two useful facts. Assume f ∈ C∞(T2) and K ∈ L1(R2) with

m(ξ)= ∫
R2 K(z)e−iξ·zdz. Then2

(Tm f )(x) :=∑
k

m(k) f̂ (k)eik·x =
∫
R2

K(z) f (x− z)dz, (5.3.3)

‖Tm f ‖Lp
x (T2) ≤ ‖K‖L1

x(R2)‖ f ‖Lp
x (T2), ∀1≤ p ≤∞. (5.3.4)

2Here and below we still denote by f its periodic extension to all of R2.
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Assume f , g ∈ C∞(T2) and K ∈ L1(R2 ×R2) with

m(ξ,η)=
∫
R2×R2

K(z1, z2)e−iξ·z1−iη·z2 dz1dz2.

Then

Tm( f , g)(x) :=∑
k

( ∑
k′∈Z2

m(k′,k−k′) f̂ (k′) ĝ(k−k′)
)
eik·x (5.3.5)

=
∫
R2×R2

K(z1, z2) f (x− z1)g(x− z2)dz1dz2, (5.3.6)

and consequently ‖Tm( f , g)‖Lr
x(T2) ≤ ‖K‖L1

x(R2×R2)‖ f ‖Lp
x (T2)‖g‖Lq

x(T2) for any 1≤
r, p, q ≤∞ with 1

r = 1
p + 1

q .

Lemma 5.3.3. Assume b0 :T2 → R with supp(b̂0) ⊂ {|k| ≤ µ} and 10 ≤ µ≤ 1
2λ.

Then (see (5.2.5))

‖T(1)
λl b0‖∞ .λ−1µ2‖b0‖∞,

‖T(2)
λl b0‖∞ .λ−2µ3‖b0‖∞,

‖∆−1∇T(2)
λl b0‖X . ‖b0‖∞λ−2µ2 logµ.

Proof. We show only the first one as the rest are similar. Choose φ1 ∈ C∞
c (R2)

such that φ1(ξ) ≡ 1 for |ξ| ≤ 1 and φ1(ξ) ≡ 0 for |ξ| ≥ 1.1. Denote φ2(z) = |l +
z| + |l − z| − 2 and note that for |z| ≤ 2

3 we have φ2(z) = ∑2
i, j=1 hi j(z)zi z j for

some hi j ∈ C∞. By (5.3.4) it suffices to show ‖F‖L1
x(R2) . λ−2µ2 for F(x) =∫

R2 φ2(λ−1ξ)φ1(µ−1ξ)eiξ·xdξ. This follows from a change of variable µ−1ξ→ ξ

and integration by parts. For the third estimate one can extract an extra

gradient from the symbol and then use Lemma 5.3.2.
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Lemma 5.3.4. Let supp(b̂0) ⊂ {|k| ≤ µ}, µ≤ 1
2λ. Then for3 some K i =F−1(mi)

with ‖K i‖L1(R4) . 1, we have

b0T(2)
λl b0 = µ2

λ2

4∑
i=1

∂xi Tmi (b0,b0),

(T(1)
λl b0)∂x1 b0 = µ2

λ

4∑
i=1

∂xi Tmi (b0,b0),

(T(1)
λl b0)∂x2 b0 = µ2

λ

4∑
i=1

∂xi Tmi (b0,b0).

Proof. Observe that for |z| ≤ 2
3 , φ(z)= |l+z|−|l−z|−2l·z =∑2

i, j,k=1 hi jk(z)zi z j zk

for some hi jk ∈ C∞. Choose φ1 ∈ C∞
c (R2) such that φ1(ξ) ≡ 1 for |ξ| ≤ 1 and

φ1(ξ)≡ 0 for |ξ| ≥ 1.1. By using parity of φ, we have

áb0T(2)
λl b0(k)= i

4
λ

∑
k′∈Z2

(φ(λ−1k′)−φ(λ−1(k′−k)))b̂0(k′)b̂0(k−k′)

=− i
4

∑
k′∈Z2

∫ 1

0
k · (∇φ)(λ−1(k′−θk))dθφ1(µ−1k′)φ1(µ−1(k−k′))b̂0(k′)b̂0(k−k′).

Note that

(∇φ)(
k′−θk
λ

)φ1(
k′

µ
)φ1(

k−k′

µ
)=λ−2 ∑

1≤i, j≤2
h̃i j(

k′−θk
λ

)(k′−θk)i(k′−θk) jφ1(
k′

µ
)φ1(

k−k′

µ
),

where h̃i j ∈ C∞
c (R2). The result then follows from (5.3.6) by checking the L1

bound of the kernel. The case for T(1)
λl is similar.

3Here F−1 denotes Fourier inverse transform on R2 ×R2. See (5.3.6).
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Proof of Proposition 5.3.1. Rewrite (5.2.3) as

∇qn+1
◦≈ Λ fn+1∇⊥ fn+1 +∇qn︸ ︷︷ ︸

Mismatch error

+Λ fn+1∇⊥ f≤n +Λ f≤n∇⊥ fn+1︸ ︷︷ ︸
Transport error

−ν∇Λγ−1 fn+1︸ ︷︷ ︸
Dissipation error

=:∇qM +∇qT +∇qD .

Frequency localization of qn+1 can be easily deduced from qM , qT , and qD

which are defined below. For convenience, we shall write a j,n+1 as a j in the

computation below.

Mismatch error. By (5.2.6), we can further decompose the mismatch error

as

∇qM
◦≈ ( main +∇qn)+ non-oscillatory error + oscillatory error

◦≈ ∇qM1 +∇qM2 +∇qM3.

We first estimate qM1. To ease the notation we write aper
j = 2

√
rn
λn+1

√
C0 +Ro

j
qn
rn

and a j = P≤µn+1 aper
j . By using a fattened frequency projection P̃≤µn+1 which is

frequency localized to {|k| ≤ 4µn+1}, we have

− 1
4
· (5λn+1) ·

2∑
j=1

l⊥j (l j ·∇)a2
j +∇qn −∇qM1

=− 5
4
λn+1

2∑
j=1

l⊥j (l j ·∇)P̃≤µn+1((P≤µn+1 aper
j )2)+∇qn −∇qM1

=− 5
4
λn+1

2∑
j=1

l⊥j (l j ·∇)P̃≤µn+1

(
−2aper

j P>µn+1 aper
j + (P>µn+1 aper

j )2
)
−∇qM1

◦≈ 0.
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5.3. Error estimates

Thus we can solve qM1 ∈ C∞
0 (T2) as

qM1 =−5
4
λn+1

2∑
j=1

∆−1∇·
(
l⊥j (l j ·∇)P̃≤µn+1

(
−2aper

j P>µn+1 aper
j + (P>µn+1 aper

j )2
))

.

(5.3.7)

Note that qM1 is frequency localized to {|k| ≤ 4µn+1}. By Lemma 5.3.2, we

obtain

‖qM1‖X . logµn+1 ·λn+1

2∑
j=1

‖aper
j ‖∞‖P>µn+1 aper

j ‖∞ . logµn+1 · (µ−1
n+1λn)2rn.

(5.3.8)

Note that both non-oscillatory error and oscillatory error have zero means,

so we define

qM2 =∆−1∇· non-oscillatory error , qM3 =∆−1∇· oscillatory error

in C∞
0 (T2). To estimate qM2, we claim that

‖∆−1∇· ((T(1)
n+1, ja j)∇⊥a j)‖X +‖∆−1∇· (5λn+1(T(2)

n+1, ja j)a j l⊥j )‖X . rnλ
−2
n+1µ

2
n+1 logµn+1.

This is because by Lemma 5.3.4 and 5.3.2 we have

‖∆−1∇· (5λn+1(T(2)
n+1, ja j)a j l⊥j )‖X . (logµn+1)λn+1(

µn+1

λn+1
)2 rn

λn+1
. rn(

µn+1

λn+1
)2 logµn+1.
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5.3. Error estimates

The other term can be estimated similarly. Then, it leads to

‖qM2‖X . rnλ
−2
n+1µ

2
n+1 logµn+1. (5.3.9)

Next we estimate qM3. Denote T(i)
n+1, j = T(i)

5λn+1l j
for i, j = 1,2. By Lemma

5.3.3, we have

‖T(1)
n+1, ja j‖∞ . λ−1

n+1µ
2
n+1

√
rn

λn+1
, ‖T(2)

n+1, ja j‖∞ . λ−2
n+1µ

3
n+1

√
rn

λn+1
.

(5.3.10)

Since all terms in (oscillatory error) have the frequency localized to ∼ λn+1

provided that 48λn ≤λn+1, the estimate for qM3 easily follows from (5.3.10):

‖∆−1∇· (osc1)‖X

.
2∑

j=1
‖∆−1∇· (l j ·∇a j +T(2)

n+1, ja j)(λn+1a j l⊥j cos(2λn+1l j · x)+∇⊥a j sin(2λn+1l j · x))‖X

.
2∑

j=1
λn+1‖∆−1∇·

(
a j l j ·∇a j l⊥j cos(2λn+1l j · x)

)
‖X

+‖∆−1∇· (∇a j · l j∇⊥a j sin(2λn+1l j · x)
)‖X

+λn+1‖∆−1∇·
(
a jT(2)

n+1, ja j l⊥j cos(2λn+1l j · x)
)
‖X

+‖∆−1∇·
(
T(2)

n+1, ja j∇⊥a j sin(2λn+1l j · x)
)
‖X

.
2∑

j=1
‖∇a j‖X‖a j‖X +λ−1

n+1‖∇a j‖X‖∇⊥a j‖X

+‖T(2)
n+1, ja j‖X‖a j‖X +λ−1

n+1‖T(2)
n+1, ja j‖X‖∇⊥a j‖X

.
(
λn

λn+1

)
rn.
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5.3. Error estimates

Similarly,

‖∆−1∇· (osc2)‖X .
2∑

j=1
‖T(1)

n+1, ja j‖∞(‖a j‖∞+λ−1
n+1‖∇⊥a j‖∞).

(
λn

λn+1

)
rn.

The estimates for (osc3)-(osc6) are similar (using 2/
p

5 ≤ |l1 ± l2| ≤ 4/
p

5) and

therefore

‖qM3‖X .
(
λn

λn+1

)
rn. (5.3.11)

Combining (5.3.8), (5.3.9), and (5.3.11) and using b > 1, β < 1, we can find

ΛM = ΛM(β,b) such that for any λ0 ≥ ΛM , we get qM = qM1 + qM2 + qM3 ∈
C∞

0 (T2) satisfying (see also Section 5.6)

‖qM‖X ≤ 1
3

rn+1.

Transport error. Define

qT =∆−1∇· (Λ fn+1∇⊥ f≤n +Λ f≤n∇⊥ fn+1) ∈ C∞
0 (T2).

SinceΛ fn+1∇⊥ f≤n+Λ f≤n∇⊥ fn+1 is frequency-localized to ∼λn+1, using ‖ f≤n‖Cα ≤
100, we get

‖qT‖X . ‖ fn+1‖∞(‖∇⊥ f≤n‖∞+‖Λ f≤n‖∞)≤ Cαλ
1−α
n

√
rn

λn+1
≤ 1

3
rn+1

for some constant Cα > 0. We can findΛT =ΛT (β,b) such that for any λ0 ≥ΛT

the last inequality holds since b > 1 and β< 1
5 .
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Dissipation error. We define qD =−νΛγ−1 fn+1 ∈ C∞
0 (T2) which satisfies

‖qD‖X ≤ C2λ
γ−1
n+1‖ fn+1‖∞ ≤ 5C2λ

γ−1
n+1

√
rn

λn+1
≤ 1

3
rn+1,

for some C2 = C2(ν,γ) > 0. Since β < 3− 2γ, we can find sufficiently small

b0 = b0(ν,γ,β) such that for any 1 < b < b0 +1 there exists ΛD =ΛD(ν,γ,β,b)

which leads the last inequality for any λ0 ≥ΛD .

Collecting the estimates, we obtain ‖qn+1‖X ≤ rn+1 if λ0 >Λ0 where Λ0 =
max(ΛM ,ΛT ,ΛD).

5.4 Proof of Theorem 5.1.2

Proof of Theorem 5.1.2. WLOG we take C0 = 2 in Proposition 5.2.3. Fix ν ≥
0, 0 < γ < 3

2 and choose parameters as in (5.1.4). Choose b and λ0 as in

Proposition 5.3.1. If necessary, we choose larger λ0 to have
∑∞

m=0λ
α− 1

2−
β

2b
m ≤

1. Take the base step ( f≤0, q0) = (0,0). At nth-step, assume that ( f≤n, qn) ∈
C∞

0 (T2)×C∞
0 (T2) satisfies

• ( f≤n, qn) solves (5.2.1).

• supp( f̂≤n)⊂ {|k| ≤ 6λn}, supp(q̂n)⊂ {|k| ≤ 12λn} and ‖qn‖X ≤ rn,

‖ f≤n‖Cα(T2) ≤ 50
n∑

m=1
λαm

√
rm−1

λm
≤ 100

n−1∑
m=0

λ
α− 1

2−
β

2b
m+1 ≤ 100.

Then by Proposition 5.3.1 and (5.2.10), at (n+1)thstep, we find fn+1 and qn+1 ∈
C∞

0 (T2) satisfying
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5.4. Proof of Theorem 5.1.2

• ( fn+1, qn+1) solves (5.2.3).

• supp(�f≤n+1) ⊂ {|k| ≤ 6λn+1}, ‖ fn+1‖Cα(T2) ≤ 50λαn+1

√
rn
λn+1

, supp(�qn+1) ⊂
{|k| ≤ 12λn+1}, and ‖qn+1‖X ≤ rn+1.

Thus the induction step can be closed and it remains to show that f≤n con-

verges to the desired weak solution. We first check its regularity. Clearly

‖ f≤n′ − f≤n‖Cα .
n′−1∑
m=n

λ
α− 1

2−
β

2b
m+1 , ∀n′ ≥ n.

Thus f≤n → f ∈ Cα(T2). Now denote θn =Λ f≤n and θ =Λ f . Clearly

〈θnΛ
−1∇⊥θn −νΛγ−2∇θn+1 −∇qn+1,∇ψ〉 = 0, ∀ψ ∈ C∞(T2).

We then rewrite the above as

1
2
〈Λ− 1

2 θn,Λ
1
2 [R⊥,∇ψ]θn〉+ν〈Λ− 1

2 θn,Λγ+ 1
2ψ〉+〈qn,∆ψ〉 = 0, ∀ψ ∈ C∞(T2).

Since Λ− 1
2 θn →Λ− 1

2 θ strongly in L∞, Proposition 5.5.1 implies that θ solves

(SQG).

Finally we remark that our solution θ =Λ f has an almost explicit form.

By using (5.2.10), we have

f =
∞∑

n=0

2∑
j=1

2
√

rn

5λn+1

(
P≤µn+1

√
C0 +Ro

j
qn

rn

)
cos(5λn+1l j · x).

The leading term is an almost explicit Fourier series (one can take C0 large)

and thus our solution is nontrivial.
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5.5 Proof of Theorem 5.1.4

In this section, we prove Theorem 5.1.4 based on the following proposi-

tion.

Proposition 5.5.1. Let R =R j, j = 1,2. Assume φ ∈ H3 and θ ∈ Ḣ− 1
2 (θ = 0).

Then we have

‖[R,φ]θ‖
Ḣ

1
2
. ‖φ‖Ḣ3‖θ‖

Ḣ− 1
2
.

Proof. Denote m(k)= k1
|k| . It suffices to show that

‖ ∑
k′ 6=0,k

|k| 1
2 (m(k)−m(k′))φ̂(k−k′)θ̂(k′)‖l2

k
. ‖|k|3φ̂(k)‖l2

k
‖|k|− 1

2 θ̂(k)‖l2
k
. (5.5.1)

If |k′|. |k−k′|, then |k|. |k−k′|, and

LHS of (5.5.1). ‖ ∑
k′ 6=0,k

|k−k′||φ̂(k−k′)| · |k′|− 1
2 |θ̂(k′)|‖l2

k
.RHS of (5.5.1).

If |k−k′|¿ |k|, then |k| ∼ |k′|, and it suffices to use |m(k)−m(k′)|. |k−k′|(|k′|+
|k|)−1.

Proof of Theorem 5.1.4. The point is to use the weak formulation (below 〈,〉
denotes L2-inner product in (t, x), and ψ is a time-dependent test function)

〈∂tθn,ψ〉+ 1
2
〈Λ− 1

2 θn,Λ
1
2 [R⊥,∇ψ]θn〉+ν〈Λ− 1

2 θn,Λγ+ 1
2ψ〉 = 0.

By using the above together with Proposition 5.5.1, we have4 ‖∂tθn‖L1
t Ḣ−8 . 1.

4Here t belongs to an arbitrary compact interval.
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5.6. Bookkeeping of various parameters

Fix any 0 6= k ∈ Z2. We have ‖∂tθ̂n(k, t)‖L1
t
. |k|8 and ‖θ̂n(k, t)‖L2

t
. |k|−s. By

further using a diagonal argument, we obtain along a subsequence

‖θ̂nl (k, t)− f̂ (k, t)‖L2
t
→ 0 for any fixed k. (5.5.2)

Using supl ‖θnl‖L2
t Ḣs . 1 (note that s >−1

2 ), we have for any integer J (below

P>J denotes frequency projection to the regime |k| ≥ 2J)

‖P>J(θnl − f )‖
L2

t Ḣ− 1
2
. 2−J(s+ 1

2 )‖θnl − f ‖L2
t Ḣs (5.5.3)

. 2−J(s+ 1
2 ). (5.5.4)

By (5.5.2) and (5.5.4), one obtains the strong convergence θnl → f in L2
t Ḣ− 1

2 .

Since ‖Λ 1
2 [R⊥,∇ψ](θn − f )‖2 . ‖θn − f ‖

Ḣ− 1
2
, it follows that f is the desired

weak solution.

5.6 Bookkeeping of various parameters

In this section we sketch how the choice of various parameters in (5.1.4)

take effect on various error terms and the regularity of the weak solution.

Recall that (observe from below logµn+1 ∼ logλn)

λn =
⌈
λbn

0

⌉
, rn =λ−β

n , µn+1 = (λnλn+1)
1
2 , α= 1

2
+ β

2b
−ε0 > 1

2
.

Mismatch error rn
λn
λn+1

logλn ¿ rn+1 ⇐⇒ λ
(b−1)(β−1)
n logλn ¿ 1.

Transport error λ1−α
n

√
rn
λn+1

¿ rn+1 ⇐⇒ λ
1−α− 1

2β− 1
2 b+bβ

n ¿ 1.

Dissipation error λ
γ−1
n+1

√
rn
λn+1

¿ rn+1 ⇐⇒ λ
γ− 3

2+β−
β

2b
n+1 ¿ 1.
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5.6. Bookkeeping of various parameters

Cα-regularity λαn+1

√
rn
λn+1

¿ 1 ⇐⇒ λ
α− 1

2− 1
2bβ

n+1 ¿ 1.

Now one can take α = 1
2 + β

2b to do a limiting computation. From the

transport error we obtain (the limiting condition)

1−α− 1
2
β− 1

2
b+bβ= 1−b

2b
(b−β(2b+1))⇒β< 1

3
.

From the dissipation error we obtain β
2 < 3

2 −γ.
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Chapter 6

Conclusion & Future Work

Throughout this thesis, we discussed three different topics.

1. The AC & CH dynamics.

In Chapter 3, we have identified the time step scaling for several first and

second order schemes for AC and CH under the restriction of fixed local trun-

cation error, σ. In particular, we derive the asymptotic behavior of time-step

number with σ and asymptotic parameter ε during meta-stable dynamics.

These predictions are made under the assumption that the time steps pre-

serve the asymptotic structure of the diffuse interface, a concept we refer to

as profile fidelity. The predictions are verified in numerical experiments. We

see that methods whose dominant local truncation error can be expressed as

a pure time derivative have optimal asymptotic performance in this partic-

ular limit. BE, TR, and BDF2 all have this desirable property. We believe

these methods will also have superior performance for other problems with

metastable dynamics. Our numerical results show that BE performs better

than expected and we have shown an explanation of this behaviour with for-

mal asymptotics.

The optimal fully implicit methods asymptotically computationally out-

perform all linearly implicit methods in the limit we consider. We present
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precise criteria on the computational cost of nonlinear solvers for this com-

parison. The provably energy stable first and second order SAV schemes had

higher computational cost than standard IMEX methods for similar results.

As a final result, we present a rigorous proof that large time steps with fully

implicit BE can be taken with locally unique solutions that are energy stable.

This is done for the 2D radial AC equation in meta-stable dynamics. Eyre-

type iteration is also considered in this analytic framework, and it is shown

that in general this approach loses profile stability unless very small time

steps are taken.

Extending the analysis to the non-radial case and to CH is an interesting

question. We observed that the question of global accuracy is not trivial in

Section 3.5 and should be considered for other schemes. Accurate local error

estimation for these problems is another interesting question to pursue.

2. The OD problem.

In Chapter 4 we summarize the ways the Oxygen Depletion problem has

been considered in the literature: with interfaces to be tracked, captured, or

found as a limit of regularized problems. We fill in a gap in the list of formu-

lations, showing that the OD problem can be considered as a gradient flow

with constraint. A new numerical capturing method based on the gradient

flow formulation is proposed and a convergence proof given. The equivalence

of all formulations is shown. A biharmonic implicit free boundary value prob-

lem and a class of vector problems are introduced.

More questions can be asked. Firstly, the regularity of boundary point

positions in 1D (Conjecture 4.2.1) and higher dimensions can be studied with

help of geometric analysis tools. Secondly analysis of the mapped domain
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formulation discussed in Remark 10 would possibly extend to a convergence

proof of its numerical approximation (Section 4.3.1). We are also interested in

an understanding of the general class of vector problems in Section 4.5.2 and

an understanding of the limiting behaviour of solutions to the OD problem

as discussed in Remark 17. The numerical approach in [63] may be useful

to gain insight into the 1D case. Studies of the biharmonic obstacle problem

discussed in Remark 18 and the general class of vector problems introduced

in Section 4.5.2 can be pursued.

3. The SQG system.

In Chapter 5, we developed a new framework of the convex integration

scheme and applied it to the stationary SQG system on the two dimensional

periodic torus. We constructed nontrivial stationary weak solutions and there-

fore showed the uniqueness.

Extending our analysis to the time-dependent case and other fluid models

such as the Navier–Stokes equations and the Euler equations is interesting

and our plane wave ansatz can be applicable.
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